Ⅰ 數學比較難的題目有哪些
11年後,即1890年,在牛津大學就讀的年僅29歲的赫伍德以自己的精確計算指出了肯普在證明上的漏洞。他指出肯普說沒有極小五色地圖能有一國具有五個鄰國的理由有破綻。不久,泰勒的證明也被人們否定了。人們發現他們實際上證明了一個較弱的命題——五色定理。就是說對地圖著色,用五種顏色就夠了。後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。 進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。1913年,美國著名數學家、哈佛大學的伯克霍夫利用肯普的想法,結合自己新的設想;證明了某些大的構形可約。後來美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色。1950年,有人從22國推進到35國。1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國。看來這種推進仍然十分緩慢。 高速數字計算機的發明,促使更多數學家對「四色問題」的研究。從1936年就開始研究四色猜想的海克,公開宣稱四色猜想可用尋找可約圖形的不可避免組來證明。他的學生丟雷寫了一個計算程序,海克不僅能用這程序產生的數據來證明構形可約,而且描繪可約構形的方法是從改造地圖成為數學上稱為「對偶」形著手。 他把每個國家的首都標出來,然後把相鄰國家的首都用一條越過邊界的鐵路連接起來,除首都(稱為頂點)及鐵路(稱為弧或邊)外,擦掉其他所有的線,剩下的稱為原圖的對偶圖。到了六十年代後期,海克引進一個類似於在電網路中移動電荷的方法來求構形的不可避免組。在海克的研究中第一次以頗不成熟的形式出現的「放電法」,這對以後關於不可避免組的研究是個關鍵,也是證明四色定理的中心要素。 電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。美國伊利諾大學哈肯在1970年著手改進「放電過程」,後與阿佩爾合作編制一個很好的程序。就在1976年6月,他們在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明,轟動了世界。 這是一百多年來吸引許多數學家與數學愛好者的大事,當兩位數學家將他們的研究成果發表的時候,當地的郵局在當天發出的所有郵件上都加蓋了「四色足夠」的特製郵戳,以慶祝這一難題獲得解決。 「四色問題」的被證明僅解決了一個歷時100多年的難題,而且成為數學史上一系列新思維的起點。在「四色問題」的研究過程中,不少新的數學理論隨之產生,也發展了很多數學計算技巧。如將地圖的著色問題化為圖論問題,豐富了圖論的內容。不僅如此,「四色問題」在有效地設計航空班機日程表,設計計算機的編碼程序上都起到了推動作用。 不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。直到現在,仍由不少數學家和數學愛好者在尋找更簡潔的證明方法。 哥德巴赫猜想是世界近代三大數學難題之一。1742年,由德國中學教師哥德巴赫在教學中首先發現的。 1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,正式提出了以下的猜想:a.任何一個大於 6的偶數都可以表示成兩個素數之和。b.任何一個大於9的奇數都可以表示成三個素數之和。 這就是哥德巴赫猜想。歐拉在回信中說,他相信這個猜想是正確的,但他不能證明。 從此,這道數學難題引起了幾乎所有數學家的注意。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。 中國數學家陳景潤於1966年證明:任何充份大的偶數都是一個質數與一個自然數之和,而後者可表示為兩個質數的乘積。」通常這個結果表示為 1+2。這是目前這個問題的最佳結果。
Ⅱ 三大數學難題有哪些
世界三大數學難題即費馬猜想、四色猜想和哥德巴赫猜想。
1、費馬猜想:
當整數n > 2時,關於x,y,z的不定方程 x^n + y^n = z^n 無正整數解。
2、四色問題
任何一張平面地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。用數學語言表示,即將平面任意地細分為不相重疊的區域,每一個區域總可以用1,2,3,4這四個數字之一來標記,而不會使相鄰的兩個區域得到相同的數字。
3、哥德巴赫猜想
1742年6月7日,德國數學家哥德巴赫在寫給著名數學家歐拉的一封信中,提出了一個大膽的猜想:任何不小於3的奇數,都可以是三個質數之和(如:7=2+2+3,當時1仍屬於質數)。同年,6月30日,歐拉在回信中提出了另一個版本的哥德巴赫猜想:任何偶數,都可以是兩個質數之和。
(2)數學有哪些難的擴展閱讀
「a + b」問題的推進
1920年,挪威的布朗證明了「9 + 9」。
1924年,德國的拉特馬赫證明了「7 + 7」。
1932年,英國的埃斯特曼證明了「6 + 6」。
1937年,義大利的蕾西先後證明了「5 + 7」, 「4 + 9」, 「3 + 15」和「2 + 366」。
1938年,蘇聯的布赫夕太勃證明了「5 + 5」。
1940年,蘇聯的布赫夕太勃證明了「4 + 4」。
1956年,中國的王元證明了「3 + 4」。稍後證明了 「3 + 3」和「2 + 3」。
1948年,匈牙利的瑞尼證明了「1+ c」,其中c是一很大的自然數。
1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了「1 + 5」, 中國的王元證明了「1 + 4」。
1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及義大利的朋比利證明了「1 + 3 」。
1966年,中國的陳景潤證明了 「1 + 2 」。
Ⅲ 大學數學那些最難學數學資料
微積分不難,幾個公式背熟,多做些題目,就會有感覺的,祝你學業有成哈。。
Ⅳ 世界十大數學難題有哪些
難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
難題」之二: 霍奇(Hodge)猜想
難題」之三: 龐加萊(Poincare)猜想
難題」之四: 黎曼(Riemann)假設
難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
難題」之八:幾何尺規作圖問題
難題」之九:哥德巴赫猜想
難題」之十:四色猜想
Ⅳ 小學數學的難點有哪些
其實很簡單,只要上課聽懂重點有三個一個是代數,第二個平面幾何和立體幾何,第三個是統計與一些雜題
Ⅵ 初二的數學那些最難
初二上學期沒什麼難的。下學期:
分式:這個不怎麼難,就是做混合運算的時候要仔細。還有分式方程記得檢驗,這章只要因式分解的基礎扎實,很簡單。
反比例函數:也沒啥難,這章最難的就是一次函數、反比例函數畫在一個坐標系中,問當x(橫坐標)是多少時一次函數大於反比例函數,這個一般有兩段
勾股定理:這個比較難了。難的題有最短距離(立體圖形上),例如求長方體上A——B最短距離,要把長方體展開,再連接AB求,涉及到根號,比較難。
四邊形:推理能力好簡單
Ⅶ 世界上最難的數學題有哪些
規尺作圖三大難題:
1.三等分任意角.
2.倍立方體,即作一個體積是給立方體體積2倍的立方體.
3.化圓為方,即作出與給定圓面積相等的正方形。
Ⅷ 數學有哪些最難的腦筋急轉彎
答:數學中的那此最難的就是答案了。
Ⅸ 數學最難學知識是哪個
我認為數學最難的知識就是高中數學幾何最變態也是最穩定猥瑣(因為不管是選擇題,填空題還是大題都很猥瑣)的——平面解析幾何。(不等式+數列難在思路,而解析幾何在於難算。很多時候你知道怎麼算就是沒辦法寫下去,太費墨水了!太費草稿紙了!)
傳說很難的——立體幾何。如果空間思維好,就一般方法,如果不好,就空間向量看著辦吧。不過立體幾何屬於剛開始接觸很吃力,習慣就好。
最需要實力的(我認為)——排列組合。它屬於考試一般(看什麼地區,像天津卷就難得吐血)平時很傷自尊的。因為你可以算出來,但是和答案就是有差距。
高中的數學和初中的數學最大的差別就是系統性,高中的數學都是非常系統的,所以會導致漏前段便不懂後段。關於笨不笨其實不是很大的問題。能夠正常考上高中的智力都是正常的。解決這些問題最主要的就是抓基礎。要回歸課本。不要輕視課本,覺得課本上的東西很簡單而不願意去學或寫,其實大多數的題目都是由課本上的題目改編而來。
而且進入高中以後,課本上題目的難度和初中上課本題目的難度完全不是一個等級的,很多課本題目還是非常難而值得一寫的。一時的吃力不代表永遠的吃力,你要相信自己,數學本來就不是很簡單的一門學問,初中的東西其實很少而且很簡單,所以不要放棄,而且同學們都懂了你不懂這是不可能的,其實同學中不乏沉默的大多數,這些不懂卻裝懂或者完全放棄的人還是有很多的,要學會向老師請教,相信自己不要放棄,多多練習,相信你會克服一時的困難的。
所以對於數學知識來講最難掌握的就是上面的就提到了高中的一些知識,只要用心的去鑽研,一定會取得好成績的。
Ⅹ 最難的數學題以及答案是什麼
什麼哥德巴赫猜想,黎曼猜想,孿生素數猜想,確實是最難的。但這些又沒有答案,不能算是題!
在這,我向題主介紹一個極具趣味數學題《九方集》:
數學趣題《九方集》
該題絕對很難,在答案公布前,幾乎無人能證明。
但答案公布後,所有人又豁然開朗。
所以非常具有趣味性!!!