1. 世界三大未解數學難題是什麼
世界三大未解數學難題如下。
1.第一題:三等分任意角。用一把沒刻度的尺子和圓規來三等分任意角。
2.第二題:化圓為方。把一個圓「兌換」成相同大小的正方形。
3.第三題:尺規作圖。用一把沒有刻度的尺子和一把圓規作出漂亮的對稱圖形。
世界近代三大數學難題之一四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。這個結論能不能從數學上加以嚴格證明呢。
他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展。1852年10月23日,他的弟弟就這個問題的證明請教他的老師、著名數學家德摩爾根,摩爾根也沒有能找到解決這個問題的途徑。
於是寫信向自己的好友、著名數學家哈密爾頓爵士請教。哈密爾頓接到摩爾根的信後,對四色問題進行論證。但直到1865年哈密爾頓逝世為止,問題也沒有能夠解決。
2. 世界上最難的數學題 這3個堪稱世界3大數學難題
1、NP完全問題
例:在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳中是否有你已經認識的人。宴會的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現宴會的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是州鏈否有你認識的人。
生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13717421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。
人們發現,所有的完全多項式非確定性問題,都可以轉換為一類叫做滿足性問題的邏輯運算問題。既然這類問題的所有可能答案,都可以在多項式時間內計算,人們於是就猜想,是否這類問題,存在一個確定性演算法,可以在多項式時間內,直接算出或是搜尋出正確的答案呢?這就是著名的NP=P?的猜想。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克於1971年陳述的。
2、黎曼假設
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2、3、5、7……等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼zeta函數ζ(s)的性態。著名的黎曼假設斷言,方程ζ(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光納跡滲明。
3、BSD猜想
數學家總是被諸如 那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上洞脊,正如馬蒂雅謝維奇指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方程是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解)。相反,如果z(1)不等於0。那麼只存在著有限多個這樣的點。
3. 考研數學三有多難
考研數學的難度只是相對而言的,一般認為數學一最難,數學二其次,數學三最簡單。數三的考試大綱是最少的。
考研數學三大綱是考研數學三(科目代碼303)的考試綱要,包括微積分、線性代數、概率論與數理統計。均要求理解概念,掌握表示法,會建立應用問題的函數關系。
數學三考試大綱及相關要求:
微積分
函數、極限、連續
考試要求
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系。
2.了解函數的有界性、單調性、周期性和奇偶性。
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念。
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念。
5.理解極限的概念,理解函數左極限和右極限的概念以及極限函數存在與左極限、右極限之間的關系。
6.了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法。
7.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小求極限。
8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型。
9.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質。
一元函數微分學
考試要求
1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程。
2.掌握基本初等函數的導數公式.導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數。
3.了解高階導數的概念,會求簡單函數的高階導數,
4.了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分。
5.理解並會用羅爾(Rolle)定理、拉格朗日( Lagrange)中值定理和泰勒定理,了解並會用柯西(Cauchy)中值定理。
6.掌握用洛必達法則求未定式極限的方法。
7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用。
8.會用導數判斷函數圖形的凹凸性,會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形。
一元函數積分學
考試要求
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法。
2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓—萊布尼茨公式以及定積分的換元積分法和分部積分法。
3.會利用定積分計算平面圖形的面積.旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題,
4.理解反常積分的概念,了解反常積分收斂的比較判別法,會計算反常積分,
多元函數微積分學
考試要求
1.了解多元函數的概念,了解二元函數的幾何意義。
2.了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質。
3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數。
4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決簡單的應用問題。
5.理解二重積分的概念,了解二重積分的與基本性質,了解二重積分的中值定理,掌握二重積分的計算方法(直角坐標.極坐標),了解無界區域上較簡單的反常二重積分並會計算。
無窮級數
考試要求
1.理解常數項級數收斂、發散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要條件。
2.掌握幾何級數與p級數的收斂和發散的條件。
3.掌握正項級數收斂性的比較判別法、比值判別法、根值判別法,會用積分判別法。
4.掌握交錯級數的萊布尼茨判別法。
5.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系。
6.理解冪級數收斂半徑的概念,並掌握冪級數的收斂半徑、收斂區間及收斂域的求法。
7.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求一些冪級數在收斂區間內的和函數,並會由此求出某些數項級數的和。
8.掌握 e的x次方,sin x,cos x,ln(1+x)及(1+x)的a次方的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數間接展開為冪級數。
常微分方程與差分方程
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念。
2.掌握變數可分離的微分方程。齊次微分方程和一階線性微分方程的求解方法。
3.理解線性微分方程解的性質及解的結構。
4.掌握二階常系數齊次線性微分方程的解法,並會解某些高於二階的常系數齊次線性微分方程。
5.會解自由項為多項式、指數函數、正弦函數、餘弦函數以及他們的和與積的二階常系數非齊次線性微分方程。
6.了解差分與差分方程及其通解與特解等概念。
7.了解一階常系數線性差分方程的求解方法。
8.會用微分方程求解簡單的經濟應用問題。
線性代數
行列式
考試內容:行列式的概念和基本性質行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質。
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式。
矩陣
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質。
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質。
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則。
向量
考試要求
1.了解向量的概念,掌握向量的加法和數乘運演算法則。
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法。
3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩。
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系。
5.了解內積的概念。掌握線性無關向量組正交規范化的施密特(Schmidt)方法。
線性方程組
考試要求
1.會用克萊姆法則解線性方程組。
2.掌握非齊次線性方程組有解和無解的判定方法。
3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法。
4.理解非齊次線性方程組解的結構及通解的概念。
5.掌握用初等行變換求解線性方程組的方法。
矩陣的特徵值和特徵向量
考試要求
1.理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法。
2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。
3.掌握實對稱矩陣的特徵值和特徵向量的性質。
二次型
考試要求
1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標准形、規范形的概念以及慣性定理。
2.掌握用正交變換化二次型為標准形的方法,會用配方法化二次型為標准形。
3.理解正定二次型。正定矩陣的概念,並掌握其判別法,
概率統計
隨機事件和概率
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算。
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等。
3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。
隨機變數及其分布
考試要求
1.理解隨機變數的概念,理解分布函數的概念及性質,會計算與隨機變數相聯系的事件的概率。
2.理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布 、幾何分布、超幾何分布、泊松(Poisson)分布及其應用。
3.掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布。
4.理解連續型隨機變數及其概率密度的概念,掌握均勻分布 、正態分布 、指數分布及其應用。
5.會求隨機變數函數的分布。
多維隨機變數及其分布
考試要求
1.理解多維隨機變數的分布函數的概念和基本性質。
2.理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度、掌握二維隨機變數的邊緣分布和條件分布。
3.理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件,理解隨機變數的不相關性與獨立性的關系。
4.掌握二維均勻分布和二維正態分布,理解其中參數的概率意義。
5.會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布。
隨機變數的數字特徵
考試要求
1.理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數字特徵的基本性質,並掌握常用分布的數字特徵。
2.會求隨機變數函數的數學期望。
3.了解切比雪夫不等式。
大數定律和中心極限定理
考試要求
1.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變數序列的大數定律)。
2.了解棣莫弗—拉普拉斯中心極限定理(二項分布以正態分布為極限分布)、列維—林德伯格中心極限定理(獨立同分布隨機變數序列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率。
數理統計的基本概念
考試要求
1.了解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念。
2.了解產生 變數、 變數和 變數的典型模式;了解標准正態分布、t分布、F分布和分布得上側 分位數,會查相應的數值表。
3.掌握正態總體的樣本均值、樣本方差、樣本矩的抽樣分布。
4.了解經驗分布函數的概念和性質。
參數估計
考試內容:點估計的概念 估計量與估計值 矩估計法 最大似然估計法。
考試要求
1.了解參數的點估計、估計量與估計值的概念。
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法。
4. 世界近代三大數學難題各是什麼,內容
1、費馬大定理
費馬大定理,又被稱為「費馬最後的定理」,由17世紀法國數學家皮耶·德·費瑪提出。
內容:當整數n >2時,關於x, y, z的方程 xⁿ + yⁿ = zⁿ沒有正整數解。
2、四色問題
四色問題又稱四色猜想、四色定理,是世界近代三大數學難題之一。地圖四色定理最先是由一位叫古德里的英國大學生提出來的。
四色問題的內容:任何一張地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。也就是說在不引起混淆的情況下一張地圖只需四種顏色來標記就行。
用數學語言表示:將平面任意地細分為不相重疊的區域,每一個區域總可以用1234這四個數字之一來標記而不會使相鄰的兩個區域得到相同的數字。
3、哥德巴赫猜想
1742年6月7日,哥德巴赫提出了著名的哥德巴赫猜想。
內容:隨便取某一個奇數,比如77,可以把它寫成三個素數之和,即77=53+17+7;再任取一個奇數,比如461,可以表示成461=449+7+5,也是三個素數之和,461還可以寫成257+199+5,仍然是三個素數之和。例子多了,即發現「任何大於5的奇數都是三個素數之和。」
(4)數學三最難的題目是什麼意思是什麼擴展閱讀
1、費馬大定理
史上最精彩的一個數學謎題。證明費馬大定理的過程是一部數學史。費馬大定理起源於三百多年前,挑戰人類3個世紀,多次震驚全世界,耗盡人類眾多最傑出大腦的精力,也讓千千萬萬業余者痴迷。
2、四色定理的本質正是二維平面的固有屬性,即平面內不可出現交叉而沒有公共點的兩條直線。很多人證明了二維平面內無法構造五個或五個以上兩兩相連區域,但卻沒有將其上升到邏輯關系和二維固有屬性的層面,以致出現了很多偽反例。不過這些恰恰是對圖論嚴密性的考證和發展推動。
計算機證明雖然做了百億次判斷,終究只是在龐大的數量優勢上取得成功,這並不符合數學嚴密的邏輯體系,至今仍有無數數學愛好者投身其中研究。
3、從關於偶數的哥德巴赫猜想,可推出:任一大於7的奇數都可寫成三個質數之和的猜想。後者稱為「弱哥德巴赫猜想」或「關於奇數的哥德巴赫猜想」。
若關於偶數的哥德巴赫猜想是對的,則關於奇數的哥德巴赫猜想也會是對的。2013年5月,巴黎高等師范學院研究員哈洛德·賀歐夫各特發表了兩篇論文,宣布徹底證明了弱哥德巴赫猜想。
5. 三大數學難題有哪些
世界三大數學難題即費馬猜想、四色猜想和哥德巴赫猜想。
1、費馬猜想:
當整數n > 2時,關於x,y,z的不定方程 x^n + y^n = z^n 無正整數解。
2、四色問題
任何一張平面地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。用數學語言表示,即將平面任意地細分為不相重疊的區域,每一個區域總可以用1,2,3,4這四個數字之一來標記,而不會使相鄰的兩個區域得到相同的數字。
3、哥德巴赫猜想
1742年6月7日,德國數學家哥德巴赫在寫給著名數學家歐拉的一封信中,提出了一個大膽的猜想:任何不小於3的奇數,都可以是三個質數之和(如:7=2+2+3,當時1仍屬於質數)。同年,6月30日,歐拉在回信中提出了另一個版本的哥德巴赫猜想:任何偶數,都可以是兩個質數之和。
(5)數學三最難的題目是什麼意思是什麼擴展閱讀
「a + b」問題的推進
1920年,挪威的布朗證明了「9 + 9」。
1924年,德國的拉特馬赫證明了「7 + 7」。
1932年,英國的埃斯特曼證明了「6 + 6」。
1937年,義大利的蕾西先後證明了「5 + 7」, 「4 + 9」, 「3 + 15」和「2 + 366」。
1938年,蘇聯的布赫夕太勃證明了「5 + 5」。
1940年,蘇聯的布赫夕太勃證明了「4 + 4」。
1956年,中國的王元證明了「3 + 4」。稍後證明了 「3 + 3」和「2 + 3」。
1948年,匈牙利的瑞尼證明了「1+ c」,其中c是一很大的自然數。
1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了「1 + 5」, 中國的王元證明了「1 + 4」。
1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及義大利的朋比利證明了「1 + 3 」。
1966年,中國的陳景潤證明了 「1 + 2 」。
6. 世界上最難的數學題是什麼答案又是什麼
據說是這個:
最難的數學題是證明題「哥德巴赫猜想」.
哥德巴赫猜想(Goldbach Conjecture)大致可以分為兩個猜想(前者稱"強"或"二重哥德巴赫猜想,後者稱"弱"或"三重哥德巴赫猜想):1.每個不小於6的偶數都可以表示為兩個奇素數之和;2.每個不小於9的奇數都可以表示為三個奇素數之和.考慮把偶數表示為兩數之和,而每一個數又是若干素數之積.如果把命題"每一個大偶數可以表示成為一個素因子個數不超過a個的數與另一個素因子不超過b個的數之和"記作"a+b".1966年,陳景潤證明了"1+2",即"任何一個大偶數都可表示成一個素數與另一個素因子不超過2個的數之和".離猜想成立即"1+1"僅一步之遙.
7. 三大數學難題分別是什麼
1、最詭異最恐怖的數學題
有3個人去投宿,一晚30元.三個人每人掏了10元湊夠30元交給了老闆.後來老闆說今天優惠只要25元就夠了,拿出5元命令服務生退還給他們,服務生偷偷藏起了2元,然後,把剩下的3元錢分給了那三個人,每人分到1元。
這樣,一開始每人掏了10元,現在又退回1元,也就是10-1=9,每人只花了9元錢,3個人每人9元,3X9=27元+服務生藏起的2元=29元,還有一元錢去了哪裡?
2、數學界的爭議:芝諾悖論
這也算是物理學界的一個爭議,阿基里斯與烏龜芝諾賽跑,烏龜在阿里斯基前面先跑100米,然後阿基里斯才開始跑。
當阿基里斯跑了100米的時候,烏龜多跑出去一米,阿基里斯跑了一米的時候,烏龜又多跑了一厘米,以此推論下來,阿基里斯永遠都跑不過烏龜。雖然現實中是很快就跑過去的,但是在數學里,似乎永遠都是追不上的。
3、詭異數學題:螞蟻與皮筋
一隻螞蟻在理性彈性繩的一端,向另一端以每秒1cm的速度爬行。彈性繩同時以每秒1m的速度均勻地拉長,螞蟻能否爬到終點?
看起來似乎不行,但是在數學里這又是行的,假設彈性繩的速度是每秒0.9cm,那麼直覺上螞蟻就能爬到終點。而彈性繩均勻拉長意味著其上總有一點的速度是每秒0.9cm,也就是說螞蟻可以爬到這個點。接下來把整個彈性繩分段就好了。
8. 從2001年到2015年中,哪一年考研數學三題目最難
今年剛考上的表示10年以前的數學完全無壓力,11年塌察衡以後開始團做有難度,而去年的數三又沒那沒升么難。
可能最難的數三集中在12、13、14吧,因人而異。
最後祝你考驗成功。
9. 史上最難的數學題是什麼
世界級數學難題讓幾代數學家為止奮斗,而其中七個「千年數學難題」更是每個難題懸賞一百萬美元
21世紀七大世界級數學難題
難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題 難題」之二: 霍奇(Hodge)猜想 難題」之三: 龐加萊(Poincare)猜想 難題」之四: 黎曼(Riemann)假設 難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口 難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性 難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
10. 世界上最難的數學題是什麼
現今世界上最難的數學題之一是哥德巴赫猜想。
從關於偶數的哥德巴赫猜想,可推出:任何一個大於7的奇數都能被表示成三個奇質數的和。後者稱為「弱哥德巴赫猜想」或「關於奇數的哥德巴赫猜想」。
若關於偶數的哥德巴赫猜想是對的,則關於奇數的哥德巴赫猜想也會是對的。2013年5月,巴黎高等師范學院研究員哈洛德·賀歐夫各特發表了兩篇論文,宣布徹底證明了弱哥德巴赫猜想。
(10)數學三最難的題目是什麼意思是什麼擴展閱讀:
華羅庚是中國最早從事哥德巴赫猜想的數學家。1936~1938年,他赴英留學,師從哈代研究數論,並開始研究哥德巴赫猜想,驗證了對於幾乎所有的偶數猜想。
1950年,華羅庚從美國回國,在中科院數學研究所組織數論研究討論班,選擇哥德巴赫猜想作為討論的主題。參加討論班的學生,例如王元、潘承洞和陳景潤等在哥德巴赫猜想的證明上取得了相當好的成績。
1956年,王元證明了「3+4」;同年,原蘇聯數學家阿·維諾格拉朵夫證明了「3+3」;1957年,王元又證明了「2+3」;潘承洞於1962年證明了「1+5」。