導航:首頁 > 數字科學 > 數學建模都有什麼分析方法

數學建模都有什麼分析方法

發布時間:2023-05-03 09:22:42

⑴ 數學建模的幾種方法

1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算
法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要
處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題
屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、
Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉
及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計
中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是
用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實
現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽
題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好
使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只
認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常
用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該
應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領械廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之。

⑵ 數學建模主要有哪些分析方法

2常用的建模方法(I)初等數學法。主要用於一些靜態、線性、確定性的模型。例如,席位分配問題,學生成績的比較,一些簡單的傳染病靜態模型。(2)數據分析法。從大量的觀測數據中,利用統計方法建立數學模型,常見的有:回歸分析法,時序分析法。(3)模擬和其他方法。主要有計算機模擬(是一種統計估計方法,等效於抽樣試驗,可以離散系統模擬和連續系統模擬),因子試驗法(主要是在系統上做局部試驗,根據試驗結果進行不斷分析修改,求得所需模型結構),人工現實法(基於對系統的了解和所要達到的目標,人為地組成一個系統)。(4)層次分析法。主要用於有關經濟計劃和管理、能源決策和分配、行為科學、軍事科學、軍事指揮、運輸、農業、教育、人才、醫療、環境等領域,以便進行決策、評價、分析、預測等。該方法關鍵的一步是建立層次結構模型。

⑶ 拿到一個數學建模題目要怎麼去分析啊有那些具體的方法

數學建模全國大賽歷年題目分析以及參賽成功方法數學建模競賽的賽題分析。
1.了解問題的實際背景,明確建模目的,收集掌握必要的數據資料。
2.在明確建模目的,掌握必要資料的基礎上,通過對資料的分析計算, 找出起主要作用的因素,經必要的精煉、簡化,提出若干符合客觀實際的假設。
3.在所作假設的基礎上,利用適當的數學工具去刻劃各變數之間的關系,建立相應的數學結構 --即建立數學模型。
4.模型求解。
5.模型的分析與檢驗。

⑷ 數學建模常用方法

1、層次分析法,簡稱AHP,是指將與決策總是有關的元素分解成目標、准則、方案等層次,在此基礎之上進行定性和定量分析的決策方法。該方法是美國運籌學家匹茨堡大學教授薩蒂於20世紀70年代初,在為美國國防部研究"根據各個工業部門對國家福利的貢獻大小而進行電力分配"課題時,應用網路系統理論和多目標綜合評價方法,提出的一種層次權重決策分析方法。

2、多屬性決策是現代決策科學的一個重要組成部分,它的理論和方法在工程設計、經濟、管理和軍事等諸多領域中有著廣泛的應用,如:投資決策、項目評估、維修服務、武器系統性能評定、工廠選址、投標招標、產業部門發展排序和經濟效益綜合評價等.多屬性決策的實質是利用已有的決策信息通過一定的方式對一組(有限個)備選方案進行排序或擇優.它主要由兩部分組成:(l) 獲取決策信息.決策信息一般包括兩個方面的內容:屬性權重和屬性值(屬性值主要有三種形式:實數、區間數和語言).其中,屬性權重的確定是多屬性決策中的一個重要研究內容;(2)通過一定的方式對決策信息進行集結並對方案進行排序和擇優。

3、灰色預測模型(Gray Forecast Model)是通過少量的、不完全的信息,建立數學模型並做出預測的一種預測方法.當我們應用運籌學的思想方法解決實際問題,制定發展戰略和政策、進行重大問題的決策時,都必須對未來進行科學的預測.預測是根據客觀事物的過去和現在的發展規律,藉助於科學的方法對其未來的發展趨勢和狀況進行描述和分析,並形成科學的假設和判斷。

⑸ 數學建模有幾種分類方法

數學模型有以下幾種分類方法

1. 按模型的數學方法分:

幾何模型、圖論模型、微分方程模型、概率模型、最優控制模型、規劃論模

型、馬氏鏈模型等。

2. 按模型的特徵分:

靜態模型和動態模型,確定性模型和隨機模型,離散模型和連續性模型,線斗腔

性模型和非線性模型等。

3. 按模型的應用領域分:

人口模型、交通模型、經濟模型、生態模型、資源模型、環境模型等。

4. 按建模的目的分: :

預測模型、優化模型、決策模型、控制模型等。

一般研究數學建模論文的時候,是按照建模的目的去分類的,並且是演算法往

往也和建模的目的對應

5. 按對模型結構的了解程度分: :

有白箱模型、灰箱模型、黑箱模型等。

比賽盡量喊改避免使用,黑箱模型、灰箱模型,以及一些主觀性模型。

6. 按比賽命題方向分:

國賽一般是離散模型和連續模型各一個,2016 美賽六個題目(離散、連續、

運籌學/復雜網路、大數據、環境科學、政策)

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

⑹ 建模的五種基本方法

量綱分析法

量綱分析是20世紀初提出的在物理領域中建立數學模型的一種方法,它是在經驗和實驗的基礎上,利用物理定律的量綱齊次性,確定各物理量之間的關系。它是一種數學分析方法,通過量綱分析,可以正確地分析各變數之間的關系,簡化實驗和便於成果整理。

在國際單位制中,有七個基本量:質量、長度、時間、電流、溫度、光強度和物質的量,它們的量綱分別為M、L、T、I、H、J和N,稱為基本量綱。

量綱分析法常常用於定性地研究某些關系和性質,利用量綱齊次原則尋求物理量之間的關系,在數學建模過程中常常進行無量綱化,無量綱化是根據量綱分析思想,恰當地選擇特徵尺度將有量綱量化為無量綱量,從而達到減少參數、簡化模型的效果。

差分法

差分法的數學思想是通過taylor級數展開等方法把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的方程組,將微分問題轉化為代數問題,是建立離散動態系統數學模型的有效方法。

構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有以下幾種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。

差分法的解題步驟為:建立微分方程;構造差分格式;求解差分方程;精度分析和檢驗。

變分法

變分法是處理函數的函數的數學領域,即泛函問題,和處理數的函數的普通微積分相對。這樣的泛函可以通過未知函數的積分和它的導數來構造,最終尋求的是極值函數。現實中很多現象可以表達為泛函極小問題,即變分問題。變分問題的求解方法通常有兩種:古典變分法和最優控制論。受基礎知識的制約,數學建模競賽大專組的建模方法使用變分法較少。

圖論法

數學建模中的圖論方法是一種獨特的方法,圖論建模是指對一些抽象事物進行抽象、化簡,並用圖來描述事物特徵及內在聯系的過程。圖論是研究由線連成的點集的理論。一個圖中的結點表示對象,兩點之間的連線表示兩對象之間具有某種特定關系(先後關系、勝負關系、傳遞關系和連接關系等)。事實上,任何一個包含了某種二元關系的系統都可以用圖形來模擬。因此,圖論是研究自然科學、工程技術、經濟問題、管理及其他社會問題的一個重要現代數學工具,更是成為了數學建模的一個必備工具。

⑺ 數學建模中綜合評價的方法有哪些

綜合評價有許多不同的方法:

1、綜合指數法:

綜合指數法是先綜合,後對比平均,其最大優點在於不僅可以反映復雜經濟現象總體的變動方向和程度,而且可以確切地、定量地說明現象變動所產生的實際經濟效果。但它要求原始資料齊全。平均指數法是先對比,後綜合平均,雖不能直接說明現象變動的絕對效果,但較綜合指數法靈活,便於實際工作中的運用。

2、TOPSIS法:

其基本原理,是通過檢測評價對象與最優解、最劣解的距離來進行排序,若評價對象最靠近最優解同時又最遠離最劣解,則為最好;否則不為最優。其中最優解的各指標值都達到各評價指標的最優值。最劣解的各指標值都達到各評價指標的最差值。

3、層次分析法:

運用層次分析法有很多優點,其中最重要的一點就是簡單明了。層次分析法不僅適用於存在不確定性和主觀信息的情況,還允許以合乎邏輯的方式運用經驗、洞察力和直覺。也許層次分析法最大的優點是提出了層次本身,它使得買方能夠認真地考慮和衡量指標的相對重要性。

另外還有RSR法、模糊綜合評價法、灰色系統法等,這些方法各具特色,各有利弊。


(7)數學建模都有什麼分析方法擴展閱讀:

綜合評價的一般步驟

1、根據評價目的選擇恰當的評價指標,這些指標具有很好的代表性、區別性強,而且往往可以測量,篩選評價指標主要依據專業知識,即根據有關的專業理論和實踐,來分析各評價指標對結果的影響,挑選那些代表性、確定性好,有一定區別能力又互相獨立的指標組成評價指標體系。

2、根據評價目的,確定諸評價指標在對某事物評價中的相對重要性,或各指標的權重;

3、合理確定各單個指標的評價等級及其界限;

4、根據評價目的,數據特徵,選擇適當的綜合評價方法,並根據已掌握的歷史資料,建立綜合評價模型;

5、確定多指標綜合評價的等級數量界限,在對同類事物綜合評價的應用實踐中,對選用的評價模型進行考察,並不斷修改補充,使之具有一定的科學性、實用性與先進性,然後推廣應用。

⑻ 數學建模中的分析方法有哪些

數學建模分析方法大體分為機理分析和測試分析兩種。
機理分析:根據對客觀事物特性的認識,找出反映內部機理的數量規律,建立的模型常有明確的物理或現實意義。
測試分析:將研究的對象看做一個「黑箱」系統(意思是它的內部機理看不清楚),通過對系統輸入、輸出數據的測量和統計分析,按照一定的准則找出與數據擬合最好的模型。
希望對你有幫助

⑼ 數學建模方法和步驟

數學建模的方法:

一、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來橡讓配推導出模型。

二、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

三、模擬和其他方法。

1、計算機模擬:實質上是統計估計方法,等效於抽樣試驗。包括離散系統模擬和連續系統模擬。

2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構。

梁指3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的可能變化,人為地組成一個系統。

數學建模的步驟:

一、模型准備:了解問題的實際背景滑雹,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

二、模型假設:根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設。

三、模型構成:根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。

四、模型求解:可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法進行求解。

五、模型分析:對模型解答進行數學上的分析。

⑽ 數學建模的方法有哪些

  1. 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);

  2. 歸類判別:歐氏距離判別、fisher判別等 ;

  3. 圖論:最短路徑求法 ;

  4. 最優化:列方程組 用lindo 或 lingo軟體解 ;

  5. 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 。

建模常用演算法,僅供參考:

  1. 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決 問題的演算法,同時間=可以通過模擬可以來檢驗自己模型的正確性,是比賽時必 用的方法) 。

  2. 數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數 據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具) 。

  3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多 數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通 常使用Lindo、Lingo 軟體實現) 。

  4. 圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算 法,涉及到圖論的問題可以用這些方法解決,需要認真准備) 。

  5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算 法設計中比較常用的方法,很多場合可以用到競賽中) 。

  6. 最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些 問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助, 但是演算法的實現比較困難,需慎重使用) 。

  7. 網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很 多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種 暴力方案,最好使用一些高級語言作為編程工具) 。

  8. 一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計 算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替 積分等思想是非常重要的) 。

  9. 數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分 析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編 寫庫函數進行調用) 。

  10. 圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文 中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問 題,通常使用Matlab 進行處理)。

閱讀全文

與數學建模都有什麼分析方法相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:703
乙酸乙酯化學式怎麼算 瀏覽:1371
沈陽初中的數學是什麼版本的 瀏覽:1316
華為手機家人共享如何查看地理位置 瀏覽:1009
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:846
數學c什麼意思是什麼意思是什麼 瀏覽:1368
中考初中地理如何補 瀏覽:1259
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:670
數學奧數卡怎麼辦 瀏覽:1349
如何回答地理是什麼 瀏覽:988
win7如何刪除電腦文件瀏覽歷史 瀏覽:1021
大學物理實驗干什麼用的到 瀏覽:1447
二年級上冊數學框框怎麼填 瀏覽:1658
西安瑞禧生物科技有限公司怎麼樣 瀏覽:826
武大的分析化學怎麼樣 瀏覽:1212
ige電化學發光偏高怎麼辦 瀏覽:1300
學而思初中英語和語文怎麼樣 瀏覽:1605
下列哪個水飛薊素化學結構 瀏覽:1387
化學理學哪些專業好 瀏覽:1451
數學中的棱的意思是什麼 瀏覽:1016