① 概率到底如何表示
分類討論
古典概率對於古典試驗中的事件A,它的概率定義為:P(A)=m/n
2 .頻率概率在做大量重復試驗時,隨著試驗次數的增加,一個事件出現的頻率,總在一個固定數的附近擺動,顯示一定的穩定性。R.von米澤斯把這個固定數定義為該事件的概率,這就是概率的頻率定義。
3.統計概率.在一定條件下,重復做n次試友雹驗,nA為n次試驗中事件A發生的次數,如果隨著n逐漸增大,頻率nA/n逐漸穩定在某一數值p附近,則數值p稱為事件A在該條件下發生的概率,記做P(A)=p。這個定義成為概率的統計定義。
4.公式好慧帆化定義.
設E是隨機試驗,S是它的樣本空間。對於E的每一事件A賦於一個實數,記為P(A),稱為事件A的概率。這里P(·)是一個集合函數,P(·)要滿足下列條件:
(1)非負性:對於每一個事件A,有P(A)≥0;
(2)規范性:對於必然事件Ω,有P(Ω)=1;
(3)可列可加性:設A1,A2……是兩兩互不相容的事件,即對於i≠j,Ai∩Aj=φ,(i,j=1,2……),則有P(A1∪A2∪……)=P(A1)+P(A2)+……
概率,又稱或然率、機會率、機率(幾率)或可能性,是概率論的基本概念。概率是對隨機事件發生的可能性的度量,一般以一個在0到1之間的實數表示一個事件發生碧游的可能性大小。越接近1,該事件更可能發生;越接近0,則該事件更不可能發生。
② 概率的符號
概率的符指槐棗號一般會寫成P(A)、p(A)或Pr(A)。
概率的應用:
概率的概念常常應用在生活中,例如風險評估及以金融唯拆市場的交易等。政府也在環境法中應用概率,稱為路徑分析。例如中東沖突可能會對油價有某程度的影響,而油價對世界經濟可能會有漣漪效應的影響。某個油品交易商認為中東沖突會使油價上升或下降,並將他的意見提供給其他交易商。
因此概率不是各自獨立的進行評估,評估的過程也不一定合理。行為經濟學就是描述團體迷思對定價、政策甚至和平或沖突的影響。
有關概率評估及組合的嚴謹方式也改變了社會。對大部分的社會大眾而言,重要的是了解概率評估的方式以及概率和決策之間的關系。概率理論另一個明顯的應用是可靠度理論。像汽車及消費性產品會在產品開發時應用可靠度理論來減少產品失效的概率。失效概率會影響廠商在產品保用證上的決策。
③ 數學中「概率」是什麼意思
概率亦稱「或然率」。它反映隨機事件出現的可能性(likelihood)大小。隨機事件是指在相同條件下,可能出現也可能不出現的事件。例如,從一批有正品和次品的商品中,隨意抽取一件,「抽得的是正品」就是一個隨機事件。
設對某一隨機現象進行了n次試驗與觀察,其中A事件出現了m次,即其出現的頻率為m/n。經過大量反復試驗,常有m/n越來越接近於某個確定的常數(此論斷證明詳見伯努利大數定律)。該常數即為事件A出現的概率,常用P (A) 表示。
(3)數學概率怎麼表示什麼意思擴展閱讀:
概型:
1、古典概型
古典概型討論的對象局限於隨機試驗所有可能結果為有限個等可能的情形,即基本空間由有限個元素或基本事件組成,其個數記為n,每個基本事件發生的可能性是相同的。
若事件A包含m個基本事件,則定義事件A發生的概率為p(A)=m/n,也就是事件A發生的概率等於事件A所包含的基本事件個數除以基本空間的基本事件的總個數,這是P.-S.拉普拉斯的古典概型定義,或稱之為概率的古典定義。
歷史上古典概型是由研究諸如擲骰子一類賭博游戲中的問題引起的。計算古典概型,可以用窮舉法列出所有基本事件,再數清一個事件所含的基本事件個數相除,即藉助組合計算可以簡化計算過程。
2、幾何概型
幾何概型若隨機試驗中的基本事件有無窮多個,且每個基本事件發生是等可能的,這時就不能使用古典概型,於是產生了幾何概型。幾何概型的基本思想是把事件與幾何區域對應,利用幾何區域的度量來計算事件發生的概率,布豐投針問題是應用幾何概型的一個典型例子。
設某一事件A(也是S中的某一區域),S包含A,它的量度大小為μ(A),若以P(A)表示事件A發生的概率,考慮到「均勻分布」性,事件A發生的概率取為:P(A)=μ(A)/μ(S),這樣計算的概率稱為幾何概型。若Φ是不可能事件,即Φ為Ω中的空的區域,其量度大小為0,故其概率P(Φ)=0。
④ 概率是什麼之間的某個數
概率,又稱或然率、機會率或機率、可能性,是數學概率論的基本概念,是一個在0到1之間的實數,表示一個事件發生的可能性大小的數,叫做該事件的概率。它是隨機事件出現的可能性的量度,同時也是概率論最基本的概念之一,是對隨機事件發生的可能性的度量。物理團跡學中常稱為幾率。
所以概率的本質就是客觀物理和主觀數學的統一,沒有什麼沖突,不要總想著分離它們。當然非要說本質虛或橡的話,當然是客觀物理是本質
但實際的物理過程其實是系統根據哈密頓原理決定性地遍歷各態時,產生的一種概率的假象,就好像我們說一個勻速旋轉的指針指某個方向的概率一樣,這完全是頻率意義上的,沒有任何隨機性。
⑤ 概率中n表示什麼
C表示組合數。
c(m,n)=p(m,n)/n
⑥ 數學概率中C3 2和A3 2是什麼意思
A(3,2):全排列。例子:數字1
,2
,
3能夠組合成多少個不同的十位數。
C(3,2):組合。例子:有三個紅綠藍的乒乓球,每次取兩個,有多少種組合。
⑦ 什麼是概率
概率,又稱或然率、機會率或機率、可能性,是數學概率論的基本概念,是一個在0到1之間的實數,表示一個事件發生的可能性大小的數,叫做該事件的概率。它是隨機事件出現的可能性的量度,同時也是概率論最基本的概念之一,是對隨機事件發生的可能性的度量。物理學中常稱為幾率。
概率的定義
隨機事件出現的可能性的量度。概率論最基本的概念之一。表示事件的可能性。人們常說某人有百分之多少的把握能通過這次考試,某件事發生的可能性是多少,這都是概率的實例。
⑧ 概率的定義是什麼
【概率的定義】
隨機事件出現的可能性的量度。概率論最基本的概念之一。人們常說某人有百分之多少的把握能通過這次考試,某件事發生的可能性是多少,這型帆都是概率的實例。
■概率的頻率定義
隨著人們遇到問題的復雜程度的增加,等可能性逐漸暴露出它的弱點,特別是對於同一事件,可以從不同的等可能性角度算出不同的概率,從而產生了種種悖論。另一方面,隨著經驗的積累,人們逐漸認識到,在做大量重復試驗時,隨著試驗次數的增加,一個事件出現的頻率,總在一個固定數的附近擺動,顯示一定的穩定性。R.von米澤斯把這個固定數定義為該事件的概率,這就是概率的頻率定義。從理論上講,概率的頻率定義是不夠嚴謹的。A.H.柯爾莫哥洛夫於1933年給出了概率的公理化定義。
■概率的嚴格定義
設E是隨機試驗,S是它的樣本空間。對於E的每一事件A賦於一個實數,記為P(A),稱為事件A的概率。這里P(·)是一個集合函數,P(·)要滿足下列條件:
(1)非負性:對於每一個事件A,有P(A)≥0;
(2)規范性:對於必然事件S,有P(S)=1;
(3)可列可加性:設A1,A2……是兩兩互不相容的事件,即對於i≠j,Ai∩Aj=φ,(i,j=1,2……),則有P(A1∪A2∪……)=P(A1)+P(A2)+……
■概率的古典定義
如果一個試驗滿足兩條:
(1)試驗只有咐鏈有限個基本結果;
(2)試驗的每個基本結果出現的可能性是一樣的。
這樣的試驗,成為古典試驗。
對於古典試驗中的事件A,它的概率定義為:
P(A)=m/n,n表示該試驗中所有可能出現卜簡雹的基本結果的總數目。m表示事件A包含的試驗基本結果數。這種定義概率的方法稱為概率的古典定義。
■概率的統計定義
在一定條件下,重復做n次試驗,nA為n次試驗中事件A發生的次數,如果隨著n逐漸增大,頻率nA/n逐漸穩定在某一數值p附近,則數值p稱為事件A在該條件下發生的概率,記做P(A)=p。這個定義成為概率的統計定義。
在歷史上,第一個對「當試驗次數n逐漸增大,頻率nA穩定在其概率p上」這一論斷給以嚴格的意義和數學證明的是早期概率論史上最重要的學者雅各布·伯努利(Jocob
Bernoulli,公元1654年~1705年)。
從概率的統計定義可以看到,數值p就是在該條件下刻畫事件A發生可能性大小的一個數量指標。
由於頻率nA/n總是介於0和1之間,從概率的統計定義可知,對任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。
Ω、Φ分別表示必然事件(在一定條件下必然發生的事件)和不可能事件(在一定條件下必然不發生的事件)。
⑨ 概率是什麼意思
概率的意思是某一事件在相同條件下可能發生也可能不發生,表示發生的可能性大小的量。
概率亦稱「或然率」,它是反映隨機事件出現的可能性大小。隨機事件是指在相同條件下,可能出現也可能不出現的事件。設對某一隨機現象進行了n次試驗與觀察,其中A事件出現了m次,即其出現的頻率為m/n。經過大量反復試驗,常有m/n越來越接近於某個確定的常數(此論斷證明詳見伯努利大數定律)。該常數即為事件態嘩A出現的概率,常用P(A)表示。
研究支配偶然事件的內在規律的學科叫概率論。屬於數學上的一個分支。概率論揭示了偶然現象所包含的內部規律的表現形式。所以概率,對人們認識自然現象和社會現象有重要的作用。比如,社會產品在分配給個人消費以前要進行扣除,需扣除多少,積累應在國民收入中佔多大比重等,就需要運用概率論來確定。
⑩ 概率的意思是什麼
概率,又稱或然率、機率或可能性,它是概率論的基本概念。概率是對隨機事件發生的可能性的度量,一般以一個在0到1之間的實數表示一個事件發生的可能性大小。
來源
概率(Probability)一詞來源於拉丁語「probabilitas」,又可以解釋為 probity.Probity的意思是「正直、誠實」,在歐洲probity用來表示法庭案例中證人證詞的權威性,且通常與證人的聲譽相關。總之與現代意義上的概率「可能性」含義不同。
古典定義
如果一個試驗滿足兩條:
(1)試驗只有有限個基本結果;
(2)試驗的每個基本結果出現的可能性是一樣的。
這樣的試驗便是古典試驗。
對於古典試驗中的事件A,它的概率定義為:P(A)=
總是介於0和1之間,從概率的統計定義可知,對任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分別表示必然事件(在一定條件下必然發生的事件)和不可能事件(在一定條件下必然不發生的事件)。
公理化定義
柯爾莫哥洛夫於1933年給出了概率的公理化定義,如下:
設E是隨機試驗,S是它的樣本空間。對於E的每一事件A賦於一個實數,記為P(A),稱為事件A的概率。這里P(A)是一個集合函數,P(A)要滿足下列條件:
(1)非負性:對於每一個事件A,有P(A)≥0;
(2)規范性:對於必然事件Ω,有P(Ω)=1;
(3)可列可加性:設A1,A2……是兩兩互不相容的事件,即對於i≠j,Ai∩Aj=φ,(i,j=1,2……),則有P(A1∪A2∪……)=P(A1)+P(A2)+……
性質:
概率具有以下7個不同的性質:
性質1:P(Φ)=0;
性質2:(有限可加性)當n個事件A1,…,An兩兩互不相容時:P(A1∪...∪An)=P(A1)+...+P(An);
性質3:對於任意一個事件A:P(A)=1-P(非A);
性質4:當事件A,B滿足A包含於B時:P(B-A)=P(B)-P(A),P(A)≤P(B);
性質5:對於任意一個事件A,P(A)≤1;
性質6:對任意兩個事件A和B,P(B-A)=P(B)-P(AB);
性質7:(加法公式)對任意兩個事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。