『壹』 大學數學專業都有哪些課程要詳細
專業基礎課有數學分析、高等代數、解析幾何、概率論與數理統計。這三者是老三門,將來如果考研時要用到的。近代數學的新三門是拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數)。另外其他的一些常見的包括數學分析、微分幾何、高等幾何、常微分方程、偏微分方程、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。
拓展資料:
1.數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學的基本要素是:邏輯和直觀、分析和推理、共性和個性。
2.數學專業培養德、智、體、美全面發展的掌握數學與應用數學科學的基本理論、基礎知識和基本方法,能夠運用數學知識和使用計算機解決若干實際數學問題,具有現代教育觀念,適應教育改革需要,以及具有良好的知識更新能力和創新能力的中等學校數學師資和教育、教學管理工作及科學研究的專門人才。
3.計算數學是伴隨著計算機的出現而迅猛發展起來的新學科,涉及計算物理、計算化學、計算力學、計算材料學、環境科學、地球科學、金融保險等眾多交叉學科。它運用現代數學理論與方法解決各類科學與工程問題,分析和提高計算的可靠性、有效性和精確性,研究各類數值軟體的開發技術。既突出了解決信息、電子與計算機領域中的某些核心理論技術問題,又注意到從這些高新技術中抽象出新的數學理論;在保持應用數學與計算數學主體研究方向優勢的基礎上,重視並加強信息科學的數學基礎、數據分析與統計計算、科學計算、現代優化、電子系統的數值模擬、生物系統的數學建模等研究。
『貳』 大學數學有哪些課程
『壹』 大學理科數學有哪些課程
高等數學
線性代數
復變函數
常微分方程
數學物理方法
概率統計
另外,根據專業不同,可能還會有其他科目
『貳』 大學數學包括哪些
「大學里讀的數學」統稱「大學數學」,教育部教育司屬下稿彎有「大學數學課程指導委內員會」。下面有很多「分容指導委員會」而「工科數學課程分指導委員會」只是其中的一個。
「工科數學課程分指導委員會」管轄的課程有「高等數學」、「線性代數」、「概率論與數理統計」、「復變函數與積分變換」、「數理方程與特殊函數」、「計算方法」六門。
經管類的少點,並且高等數學(經管類一般稱為微積分)
《高等數學》課程的內容為:函數與極限,一元函數微分學,一元函數積分學,空間解析幾何,多元函數微分學,多元函數積分學(重積分與曲線、曲面積分),級數(數項級數、冪級數、傅立葉級數),微分方程,場論初步(梯度、散度、旋度)。
『叄』 大學數學專業都有哪些課程要詳細
專業基礎類課程:
解析幾何
數學分析I、II、III
高等代數I、II
常微分方程
抽象代數
概率論基礎
復變函數
近世代數
專業核心課程:
實變函數
偏微分方程
概率論
拓撲學
泛函分析
微分幾何
數理方程
專業選修課:
離散數學(大二上學期)旦枯
數值計算與實驗(大二下學期)
分析學(1)
代數學(1)
伽羅瓦理論
復分析
代數數論
動力系統引論
基礎數論
偏微分方程(續)
一般拓撲學
理論力學
數學建模
微分拓撲
調和分析
常微分方程幾何理論
分析專題選講
組合數學與圖論
范疇論
緊黎曼曲面
黎曼幾何初步
偏微近代理論
交換代數
代數拓撲
同調代數
流形與幾何
小波與調和分析
李群李代數
分析學Ⅱ
代數學Ⅱ
代數K理論
代數幾何
多復變基礎
泛函分析(續)
『肆』 大學數學專業基礎課程有哪些
專業基礎課有來數學分析、高等代自數、解析幾何、概率論與數理統計:這三者是老三門,將來如果考研時要用到的;近代數鍵遲悶學的新三門是:拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數);另外其他的一些常見的分支包括樓上所說的復變函數、常微分、運籌、最優化,數學模型。
『伍』 數學專業有哪些專業課程
數學專業的專業課程有:
一、數學分析
又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
二、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
三、復變函數論
復變函數論是數學中一個基本的分支學科,它的研究對象是復變數的函數。復變函數論歷史悠久,內容豐富,理論十分完美。它在數學許多分支、力學以及工程技術科學中有著廣泛的應用。 復數起源於求代數方程的根。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
四、抽象代數
抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
五、近世代數
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。
法國數學家伽羅瓦在1832年運用「群」的思想徹底解決了用根式求解多項式方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解代數方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。
『叄』 數學專業考研考什麼科目
《數學》網路網盤免費下載
鏈接:
「數學專業的研究生考試科目包括四門,有英語、政治、數學和專業課,專業課為高等數學、線性代數、概率論與數理統計等。各院校專業課考試科目不同,考生可以關注自己想要報考的院校官網,或詢問該校的學長學姐。」
『肆』 大學本科數學專業的,都要學哪些科目
專業基礎課有數學分析、高等代數、解析幾何、概率論與數理統計:這三者是老三門,將來如果考研卜咐時要用到的。
近代數學的新三門是:拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數)。
另外其他的一緩弊頃些常見的分支包括復變函數、常微分、運籌、最優化,數學模型。
『伍』 大學數學學什麼內容
大學數學一般是高等數學,包括微積分、代數學、幾何學以及它們之間的交叉內容。高等數學的主要學習內容包括數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
數學分析課程的內容一般由極限論、一元微積分、級數論和多元微積分這四大部分所組成,其中一元微積分對應了通常國外所說的「初等微積分」課程,而極限論、級數論和多元微積分這三部分則對應了國外所說的「高等微積分」課程。極限理論的主要內容有:數列的極限、函數的極限、連續函數、關於實數的基本定理、以及閉區間上連續函數的性質。
大學數學學習技巧
第一、大學的數學非常注重邏輯,課前的預習有助於學好大學數學,一可以發現不懂的,二可以在正式課程上加深印象。
第二,重點掌握關鍵公式,大學數學不會考得太深,基本是學會了相關的內容,考試就考這么些內容,所以公式必定要爛熟於心。
第三,練習是很重要的,大學數學雖然考得不深,但是學生常有,上課聽老師說,明白。但是課後自己做題,卻發現不會。這就是沒有熟練的典型特徵
第四,考試復習的時候,一定要聽老師在考試前一節課給你們講的題,或者老師劃的重點。大學的考試,老師說什麼,考試幾乎就考什麼的。
『陸』 考研數學專業要考什麼科目
考研數學系,共有以下四門考試: