Ⅰ 高中數學必修1~5分別講什麼內容,詳細的
親,這個要看你用的什麼教材的啦~
搜個目錄就可以了呀~
比如下面是人教版的:
【必修一】
第一章集合與函數概念
1.1集合
1.2函數及其表示
1.3函數的基本性質
第二章基本初等函數(Ⅰ)
2.1指數函數
2.2對數函數
2.3冪函數
第三章函數的應用
3.1函數與方程
3.2函數模型及其應用
【必修二】
第一章空間幾何體
1.1空間幾何體的結構
1.2 空間幾何體的三視圖和直觀圖
1.3 空間幾何體的表面積與體積
第二章點、直線、平面之間的位置關系
2.1空間點、直線、平面之間的位置關系
2.2直線、平面平行的判定及其性質
2.3直線、平面垂直的判定及其性質
第三章直線與方程
3.1直線的傾斜角與斜率
3.2直線的方程
3.3直線的交點坐標與距離公式
第四章圓與方程
4.1圓的方程
4.2直線、圓的位置關系
4.3空間直角坐標系
【必修三】
第一章演算法初步
1.1演算法與程序框圖
1.2基本演算法語句
1.3演算法案例
第二章統計
2.1隨機抽樣
2.2用樣本估計總體
2.3變數間的相關關系
第三章概率
3.1隨機事件的概率
3.2古典概型
3.3幾何概型
【必修四】
第一章三角函數
1.1任意角和弧度制
1.2任意角的三角函數
1.3三角函數的誘導公式
1.4三角函數的圖象和性質
1.5函數的圖象
1.6三角函數模型的簡單應用
第二章平面向量
2.1平面向量的實際背景及基本概念
2.2平面向量的線性運算
2.3平面向量的基本定理及坐標表示
2.4平面向量的數量積
2.5平面向量應用舉例
第三章三角恆等變換
3.1兩角和與差的正弦、餘弦和正切公式
3.2簡單的三角恆等變換
【必修五】
第一章解三角形
1.1正弦定理和餘弦定理
1.2應用舉例
第二章數列
2.1數列的概念與簡單表示法
2.2等差數列
2.3等差數列的前n項和
2.4等比數列
2.5等比數列的前n項和
第三章不等式
3.1不等關系與不等式
3.2一元二次不等式及其解法
3.3二元一次不等式(組)與簡單的線性規劃問題
3.4基本不等式
祝你好運O(∩_∩)O~
Ⅱ 高一都包括哪些課程啊
高中一年級所設課程包括:語文、數學、英語,此三門是文科和理科的公共基礎課,高考必考科目。而政治、歷史、地理則是文科必修科目,也是文科高考必考科目。物理、化學、生物則是理科必修科目,高考必考科目。
而選修課在高一並不實行,只有輔助課程,比如體育和實驗課等。
(2)高一數學必修有哪些內容擴展閱讀:
我國普通高中的教育體系日益在不斷完善,並且也在不斷的改革。由最初的全國各地大統一發展到文理科的出現,接著給予部分省市自主開展高中課程改革。
此外,我國政府給予有能力的出版社出版高質量的高中教材,打破了曾經人教版教材一枝獨秀的局面,後來選修課的出現使高中展現出新的活力。
Ⅲ 高一數學必修1主要內容有哪些
1.集合與函數(集合的概念、集合元素的三個特徵、集合的分類、子集的概念、子集的性質、有限集合的子集個數、關於集合的運算:注意交集或並集中「或」「且」的意思,「或」兩者皆可的意思「且」是兩者都有的意思、交集與並集的有關性質、全集與補集的性質、函數的定義、三要素、函數的定義域、函數的值域、函數的單調性、單調區間、奇偶性以及奇偶性的特點)
2.基本初等函數(指數函數、對數函數、冪函數,其中要區分各函數的圖像、定義域、函數的單調性與運算性質等)
3.函數的應用(主要是求零點,要記住零點是一個數不是一個點,利用函數y=f(x)的零點求方程f(x)=0的實數根,還有用二分法求方程的近似解等)
附加:
1.集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作『A交B』),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作『A並B』),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作 ,即
CSA=
韋
恩
圖
示
性
質 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.
2.求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
相同函數的判斷方法:①表達式相同(與表示自變數和函數值的字母無關);②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
3.函數的性質
(1).函數的單調性(局部性質)
a.增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
b. 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
其規律:「同增異減」
4.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關系;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函數的圖象判定 .
函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
Ⅳ 高一數學必修1的目錄內容
第一章 集合
1.1 集合的含義及其表示
1.2 子集、全集、補集
1.3 交集、並集
第二章 函數
2.1 函數的概念
2.2 函數的簡單性質
2.3 映射的概念
第三章 指數函數、對數函數和冪函數
3.1 指數函數
3.2 對數函數
3.3 冪函數
3.4 冪函數的應用
資料拓展
電子教材 蘇教版
Ⅳ 高一數學都有哪些內容
要看你是哪個版本的高一數學呢?
人教?北師大版?蘇教?
一般高一數學學習內容:
集合、充要條件、邏輯用語、函數、不等式、三角函數等內容
Ⅵ 高一數學內容包含哪些
高一上學期有的地方是學習必修一和必修四,必修一的主要內容是《集合》、《函數》,必修四的主要內容是《三角函數》、《向量》。但是有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》。如初中所學習的直線方程,園的方程以及他們的一些性質關系等。
在高一上學期,必修一是一定要學的,函數這一章一定要學好,它包括函數的概念,圖像,性質以及一些基本函數,如二次函數,指數函數,對數函數,冪函數等。
必修三中的內容要簡單一些,包括《統計初步》、《演算法》、《概率》。除 了演算法外,其他內容我們在初中都已經接觸過。
到了高二要學習必修五,主要內容是《數列》,《不等式》等,對於我們在高一學習的解析幾何,到了高二還要學《圓錐曲線》等。當然,函數與導數,參數方程與極坐標也應該是高二學習的內容。地方不同,還有些選學的內容也不同。
2高一數學必背知識點有哪些
【第一章:集合與函數概念】
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:XKb1.Com
非負整數集(即自然數集)記作:N
正整數集:N*或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xÎR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
Ⅶ 高一數學必修1主要內容有哪些
數學必修一主要內容有兩個:集合、函數。
詳細內容見網路:
「https://wapke..com/item/高中數學必修1/8030807?adapt=1&fr=aladdin」
Ⅷ 高一數學有哪些內容
高一的數學內容還是比較簡單的,比如說一元一次方程二元一次方程,等等吧。
Ⅸ 高一數學必修一共有幾章
3章
第1章:集合與函數概念(集合,函數與映射的概念,函數的基本性質)
主要講的是,集合的表示,集合與集合間的關系,還有就是函數的單調性和奇偶性
第2章:基本初等函數
(指數函數,對數函數,冪函數)
這2章主要是講這些初等函數的性質,其中也涉及對數的運算
第3章:函數的應用
(函數與方程,函數模型及其應用)
當然,不同的區域書的內容也可能不同
Ⅹ 高中數學必修1都有什麼內容
馬上就要高考了,現在高中數學讓很多孩子頭疼,很多的家長還有孩子都開始著急,他們都在上一些輔導班,都在採取一對一的輔導,對於一對一的教師都是可以抓住孩子的一些弱點,然後還要了解他們的學習過程,還會幫助學生制定一些計劃,幫助他們提高學習的效率,對於高中數學,一定掌握學習的方法,才可以提高成績.高中數學都要學習什麼知識?
高中數學補習班
一、函數
對於函數這個版塊的一些問題,每年都是高考的重點,就想是必修一所學的一些重點就是,集合、定義域、值域以及圖像的性質,這些題型在高考數學中是很常見的,對於這些題你們都需要注意哪些事項?
1、集合這個問題還是現在高中數學最基本的一種問題,但是集合這種問題在初中的時候我們就接觸過了,現在高中所學的集合也就是在重新講一下他的概念,讓你能很快的完成集合的運算,更重要的一點就是,還可以讀懂數學的語言以及他的符號.
2、在初中的時候我們學習函數覺得函數很難,我們初中學的函數,無非就是一些圖像還有就是性質,但是高中就不一樣了,需要更深入的了解,但是對於復習還是要抓住每一個知識點去進行復習,找到自己的不足,要想提高成績,就要找到技巧. 二、三角
對於三角,還是經常考的題型,分為三角函數還有就是三角函數的兩角之和和之差,對於三角的考查就是要對圖像的變化以及性質進行命題,但是這些題,還是很好回答的,只要記住死公式就好.
1、對於解答三角的角度還有就是他們的倍數關系都是可以通過公式進行解答的,這些公式用的比較廣泛,實在不會的解答題,還是可以把公式放上去,也要給分.
2、還有半形公式,這個公式還有一定過得范圍,會讓你來決定,但是在一些表達的式子裡面,還要選擇和題意一樣的.
3、三角函數,我們在初中的時候就接觸過,到了高中數學我們還要更深的去了解,還要把一些運算帶到高中,一定要掌握技巧.
高中數學知識
對於高中數學的一些知識,其實還是很簡單的,只要你抓住學習的方法,從中找到樂趣,讓自己喜歡上數學,對你的學習是很有幫助的,至於一對一輔導,其實還是有用的,好的老師會給你講述好的學習方法,然後讓你考一個好成績,拿到滿意的答卷.