⑴ 請問現代數學是什麼為什麼都大學了還沒學過現代數學
現代數學是在大學數學基礎上的,像集合論、拓撲學、泛函分析。
這些課大清當然大正猛學也學,但是是個皮毛。你同學這樣說只能說明他不懂。
趣味舉仿橋數學,不是一個學科啦
⑵ 什麼是數學,數學有什麼研究內容
2022版數學課程標准關於學業水平考試的命題原則有以下三個:(1)堅持素養立意,凸顯育人導向。(2)遵循課標要求,嚴格依標命中陵題。(3)規范命題管理,加強質量監測。
數學是研究數量關系和空間形式的科學。數學源於對現實世界的抽象,通過對數量和數量關系、圖形和圖形關系的抽象,得到數學的研究對象及其關系;基賣宴戚祥啟於抽象結構,通過對研究對象的符號運算、形式推理、模型構建等,形成數學的結論和方法,幫助人們認識、理解和表達現實世界的本質、關系和規律。
⑶ 現代數學與中學數學主要講的是什麼內容
現代數學主要是 微積分
中學數學主要是 歐式幾何和初等代數
⑷ 現代數學的特徵
現代數學的三大顯著特徵是符號化、公理化和形式化。
符號化:大家都知道數學是抽象的,是研究從現實生活中抽象出來的數及數之間的關系,因此數學研究得到的模型必須具有普適性,是高度抽象和概括的,不能說適用於現實中關於雞的問題,卻不適用於鴨的問題。為了達到這樣的目標,如果在研究數之間的關系時,需要比數量帶上那就非常麻煩。比如我們常說一隻青蛙一張嘴,兩隻眼睛四條腿,按這樣的說法說一輩子也說不完,但數學的符號化很好的解決了這個問題,現在我們都知道a只青蛙a張嘴,2a隻眼睛,4a條腿,而且這里的a、2a和4a的關系不因現實是青蛙還是兔子而發生改變。這只是一個比較簡單的例子,因為這樣的關系只能用於4條腿的動物,而我們都熟知的運算律卻是完全使用與現實生活的,比如a+b=b+a,所以數學的符號化為更好的研究數之間的關系提供了可能,也為後面兩個特徵奠定了基礎。
公理化:其實可以理解為大家學習的數學證明題,你會發現在證明某個命題時我們需要從正確的命題a得到正確的命題b,最後經歷若干次這樣的過程得到命題是否正確。在這個過程中你是否考慮過,每一個命題之所以正確都是由於它有一個前提,這個前提推出了它的正確,比如上面提到的命題b,為什麼命題b是正確的?這是因為正確的命題a推出了命題b是正確的。那現在我們想一想命題a又為什麼是正確的呢?哪個命題能證明呢?這樣逐一倒退,最終我們會發現這是沒有終點的,但如果沒有終點我們就無法證明某個命題是否正確,而且也並不是所有的命題我們都能個找到前提來證明的,比如如果a=b且b=c,那麼a=c,這個命題是沒有辦法找到前提來證明的。鑒於此,著名的數學家歐幾里得提出了五個公理:1、等於同量的量彼此相等。2、等量加等量,其和相等。3、等量減等量,其差相等。4、彼此能重合的物體是全等的。5、整體大於部分。正是因為有了這5條公理,我們才能夠由他們出發,得到更多的關系,也因此建立了數學的公理化體系。
形式化:這里的形式化指的是論證方法的形式化,之前我們說到了數學的公理化,即我們可以通過證明的方法得到某些命題是否正確,但是這個證明的過程應該是怎樣的,怎樣寫才能保證邏輯嚴密,同時又不冗餘,因此亞里士多德提出了著名的「三段論」,即以一個一般性的原則(大前提)以及一個附屬於一般性的原則的特殊化陳述(小前提),由此引申出一個符合一般性原則的特殊化陳述(結論)的過程。比如動物都有思想(大前提),人是動物(小前提),所以人有思想(結論)。這個過程現在看來好像是很正常的,但這一偉大的發明為人類思維方法的確立以及思維能力的提高奠定了堅實的基礎。
⑸ 請問現代數學的學科有哪些
數論,代數,抽象代數,幾何學,微積分襲孝滑學(叫數學分析應該會比較准確),數學邏慎仔輯學拍臘,離散數學,應用數學(包括,數學物理,概率,統計,博弈,數學經濟,生物數學).
⑹ 現代數學包括哪些分支分別在什麼階段學習
現代數學的三大分支是:代數、幾何、分析。數學的定義是研究集合及集合上某種結構的學科,是形式科學的一種,集合論和邏輯學是它的基礎,證明是它的靈魂。由於它與自然科學尤其是物理學關系極為密切,有時數學也被歸為自然科學六大基礎學科之一。數學中未被定義的概念是集合,其他的一切都是有定義的。數學的標准形式是公理法,即給集合和集合上的某結構下一組公理,其他的一切理論都由這組公理推導證明而來。集合上的結構就是定義在幾何元素或子集之間的一些關系,原始分為三類:描述順序關系的序結構,描述運算關系的代數結構,描述臨近關系的拓撲結構,這些結構可以互相結合成為其他一些復雜的結構,比如幾何結構,測度結構等等。由這些結構構造出來的各種集合或者說空間,就是不同數學分支研究的內容。代數學研究具有若干代數結構的集合,比如群、環、體、域、模、格、線性空間、各種內積空間等等,這些結構最初都是由初等代數,或者說初等數論和方程式論的研究中抽象出來的。代數學包括:初等代數、初等數論、高等(線性)代數、抽象代數(群論、環論、域論等)、表示論、多重線性代數、代數數論、解析數論、微分代數、組合論等等。幾何學研究具有若干幾何-拓撲結構的集合,比如仿射空間、拓撲空間、度量空間、仿射內積空間、射影空間、微分流形等。最初是由歐氏幾何發展而來。幾何學包括:初等(歐氏綜合)幾何、解析幾何、仿射幾何、射影幾何、古典微分幾何、點集拓撲、代數拓撲、微分拓撲、整體微分幾何、代數幾何等等。分析學研究帶有若干拓撲-測度的集合,以及定義在這些集合上的函數空間比如可測-測度空間、賦范空間、巴拿赫空間、希爾伯特空間、概率空間等等,由微積分發展而來。分析學包括:數學分析、常微分方程、復變函數論、實變函數論、偏微分方程、變分法、泛函分析、調和分析、概率論等等。
⑺ 什麼是現代數學
現代數學仍以代數、幾何與分析為三大基礎,作為21世紀的非數學專業的研究生(或科技工作者來講),系統掌握現代數學基礎知識,無論是作為工具性目的的需要還是邏輯思維方法的訓練(或借鑒),都是必須的。
⑻ 現代數學概論包含那些內容
集合論、非歐幾何、拓撲學、抽象代數、模糊數學、分形幾何、泛函分析等
⑼ 現代數學的概述
現代數學時期是指由20世紀40年代至今,這一時期數學主要研究的是最一般的數量關系和空間形式,數和量僅僅是它的極特殊的情形,通常的一維、二維、三維空間的幾何形象也僅僅是特殊情形。抽象代數、拓撲學、泛函分析是整個現代數學科學的主體部分。它們是大學數學專業的課程,非數學專業也要具備其中某些知識。變數數學時期新興起的許多學科,蓬勃地向前發展,內容和方法不斷地充實、擴大和深入。
18、19世紀之交,數學已經達到豐沛茂密的境地,似乎數學的寶藏已經挖掘殆盡,再沒有多大的發展餘地了。然而,這只是暴風雨前夕的寧靜。19世紀20年代,數學革命的狂飆終於來臨了,數學開始了一連串本質的變化,從此數學又邁入了一個新的時期——現代數學時期。
19世紀前半葉,數學上出現兩項革命性的發現——非歐幾何與不可交換代數。
大約在1826年,人們發現了與通常的歐幾里得幾何不同的、但也是正確的幾何——非歐幾何。這是由羅巴契夫斯基和里耶首先提出的。非歐幾何的出現,改變了人們認為歐氏幾何唯一地存在是天經地義的觀點。它的革命思想不僅為新幾何學開辟了道路,而且是20世紀相對論產生的前奏和准備。
後來證明,非歐幾何所導致的思想解放對現代數學和現代科學有著極為重要的意義,因為人類終於開始突破感官的局限而深入到自然的更深刻的本質。從這個意義上說,為確立和發展非歐幾何貢獻了一生的羅巴契夫斯基不愧為現代科學的先驅者。
1854年,黎曼推廣了空間的概念,開創了幾何學一片更廣闊的領域——黎曼幾何學。非歐幾何學的發現還促進了公理方法的深入探討,研究可以作為基礎的概念和原則,分析公理的完全性、相容性和獨立性等問題。1899年,希爾伯特對此作了重大貢獻。
在1843年,哈密頓發現了一種乘法交換律不成立的代數——四元數代數。不可交換代數的出現,改變了人們認為存在與一般的算術代數不同的代數是不可思議的觀點。它的革命思想打開了近代代數的大門。
另一方面,由於一元方程根式求解條件的探究,引進了群的概念。19世紀20~30年代,阿貝爾和伽羅華開創了近代代數學的研究。近代代數是相對古典代數來說的,古典代數的內容是以討論方程的解法為中心的。群論之後,多種代數系統(環、域、格、布爾代數、線性空間等)被建立。這時,代數學的研究對象擴大為向量、矩陣,等等,並漸漸轉向代數系統結構本身的研究。
上述兩大事件和它們引起的發展,被稱為幾何學的解放和代數學的解放。
19世紀還發生了第三個有深遠意義的數學事件:分析的算術化。1874年威爾斯特拉斯提出了一個引人注目的例子,要求人們對分析基礎作更深刻的理解。他提出了被稱為「分析的算術化」的著名設想,實數系本身最先應該嚴格化,然後分析的所有概念應該由此數系導出。他和後繼者們使這個設想基本上得以實現,使今天的全部分析可以從表明實數系特徵的一個公設集中邏輯地推導出來。
現代數學家們的研究,遠遠超出了把實數系作為分析基礎的設想。歐幾里得幾何通過其分析的解釋,也可以放在實數系中;如果歐氏幾何是相容的,則幾何的多數分支是相容的。實數系(或某部分)可以用來解群代數的眾多分支;可使大量的代數相容性依賴於實數系的相容性。事實上,可以說:如果實數系是相容的,則現存的全部數學也是相容的。
19世紀後期,由於狄德金、康托和皮亞諾的工作,這些數學基礎已經建立在更簡單、更基礎的自然數系之上。即他們證明了實數系(由此導出多種數學)能從確立自然數系的公設集中導出。20世紀初期,證明了自然數可用集合論概念來定義,因而各種數學能以集合論為基礎來講述。
拓撲學開始是幾何學的一個分支,但是直到20世紀的第二個1/4世紀,它才得到了推廣。拓撲學可以粗略地定義為對於連續性的數學研究。科學家們認識到:任何事物的集合,不管是點的集合、數的集合、代數實體的集合、函數的集合或非數學對象的集合,都能在某種意義上構成拓撲空間。拓撲學的概念和理論,已經成功地應用於電磁學和物理學的研究。
20世紀有許多數學著作曾致力於仔細考查數學的邏輯基礎和結構,這反過來導致公理學的產生,即對於公設集合及其性質的研究。許多數學概念經受了重大的變革和推廣,並且像集合論、近世代數學和拓撲學這樣深奧的基礎學科也得到廣泛發展。一般(或抽象)集合論導致的一些意義深遠而困擾人們的悖論,迫切需要得到處理。邏輯本身作為在數學上以承認的前提去得出結論的工具,被認真地檢查,從而產生了數理邏輯。邏輯與哲學的多種關系,導致數學哲學的各種不同學派的出現。
20世紀40~50年代,世界科學史上發生了三件驚天動地的大事,即原子能的利用、電子計算機的發明和空間技術的興起。此外還出現了許多新的情況,促使數學發生急劇的變化。這些情況是:現代科學技術研究的對象,日益超出人類的感官范圍以外,向高溫、高壓、高速、高強度、遠距離、自動化發展。以長度單位為例、小到1塵(毫微微米,即10^-15米),大到100萬秒差距(325.8萬光年)。這些測量和研究都不能依賴於感官的直接經驗,越來越多地要依靠理論計算的指導。其次是科學實驗的規模空前擴大,一個大型的實驗,要耗費大量的人力和物力。為了減少浪費和避免盲目性,迫切需要精確的理論分機和設計。再次是現代科學技術日益趨向定量化,各個科學技術領域,都需要使用數學工具。數學幾乎滲透到所有的科學部門中去,從而形成了許多邊緣數學學科,例如生物數學、生物統計學、數理生物學、數理語言學等等。
上述情況使得數學發展呈現出一些比較明顯的特點,可以簡單地歸納為三個方面:計算機科學的形成,應用數學出現眾多的新分支、純粹數學有若乾重大的突破。
1945年,第一台電子計算機誕生以後,由於電子計算機應用廣泛、影響巨大,圍繞它很自然要形成一門龐大的科學。粗略地說,計算機科學是對計算機體系、軟體和某些特殊應用進行探索和理論研究的一門科學。計算數學可以歸入計算機科學之中,但它也可以算是一門應用數學。
計算機的設計與製造的大部分工作,通常是計算機工程或電子工程的事。軟體是指解題的程序、程序語言、編製程序的方法等。研究軟體需要使用數理邏輯、代數、數理語言學、組合理論、圖論、計算方法等很多的數學工具。目前電子計算機的應用已達數千種,還有不斷增加的趨勢。但只有某些特殊應用才歸入計算機科學之中,例如機器翻譯、人工智慧、機器證明、圖形識別、圖象處理等。
應用數學和純粹數學(或基礎理論)從來就沒有嚴格的界限。大體上說,純粹數學是數學的這一部分,它暫時不考慮對其它知識領域或生產實踐上的直接應用,它間接地推動有關學科的發展或者在若干年後才發現其直接應用;而應用數學,可以說是純粹數學與科學技術之間的橋梁。
20世紀40年代以後,涌現出了大量新的應用數學科目,內容的豐富、應用的廣泛、名目的繁多都是史無前例的。例如對策論、規劃論、排隊論、最優化方法、運籌學、資訊理論、控制論、系統分析、可靠性理論等。這些分支所研究的范圍和互相間的關系很難劃清,也有的因為用了很多概率統計的工具,又可以看作概率統計的新應用或新分支,還有的可以歸入計算機科學之中等等。
20世紀40年代以後,基礎理論也有了飛速的發展,出現許多突破性的工作,解決了一些帶根本性質的問題。在這過程中引入了新的概念、新的方法,推動了整個數學前進。例如,希爾伯特1990年在國際教學家大會上提出的尚待解決的23個問題中,有些問題得到了解決。60年代以來,還出現了如非標准分析、模糊數學、突變理論等新興的數學分支。此外,近幾十年來經典數學也獲得了巨大進展,如概率論、數理統計、解析數論、微分幾何、代數幾何、微分方程、因數論、泛函分析、數理邏輯等等。
當代數學的研究成果,有了幾乎爆炸性的增長。刊載數學論文的雜志,在17世紀末以前,只有17種(最初的出於1665年);18世紀有210種;19世紀有950種。20世紀的統計數字更為增長。在本世紀初,每年發表的數學論文不過1000篇;到1960年,美國《數學評論》發表的論文摘要是7824篇,到1973年為20410篇,1979年已達52812篇,文獻呈指數式增長之勢。數學的三大特點—高度抽象性、應用廣泛性、體系嚴謹性,更加明顯地表露出來。
今天,差不多每個國家都有自己的數學學會,而且許多國家還有致力於各種水平的數學教育的團體。它們已經成為推動數學發展的有力因素之一。目前數學還有加速發展的趨勢,這是過去任何一個時期所不能比擬的。現代數學雖然呈現出多姿多彩的局面,但是它的主要特點可以概括如下:(1)數學的對象、內容在深度和廣度上都有了很大的發展,分析學、代數學、幾何學的思想、理論和方法都發生了驚人的變化,數學的不斷分化,不斷綜合的趨勢都在加強。(2)電子計算機進入數學領域,產生巨大而深遠的影響。(3)數學滲透到幾乎所有的科學領域,並且起著越來越大的作用,純粹數學不斷向縱深發展,數理邏輯和數學基礎已經成為整個數學大廈基礎。
⑽ 現代數學研究什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」
這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。
歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」
那麼,究竟什麼是數學呢?
偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。
數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。
純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。
應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。
高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。
體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。
廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。
各門科學的「數學化」,是現代科學發展的一大趨勢。