導航:首頁 > 數字科學 > 7年級下冊數學第一章是什麼

7年級下冊數學第一章是什麼

發布時間:2023-05-14 01:25:38

㈠ 七年級下冊人教版數學第一章是什麼

如果是北師大版,第一單元:整式禪答的運算。新人教明輪版是激襲信,相交線與平行線。華師大版,一元一次方程。新蘇教版,平面圖形的認識,浙教版,三角形

㈡ 七年級下數學知識點總結

人教版 七年級數學 下冊主要包括相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組和數據的收集、整理與表述六章內容。下面我給大家分享一些七年級下數學知識點,希望能夠幫助大家,歡迎閱讀!

↓↓↓點擊獲取"七年級知識點"↓↓↓

初中數學圓的知識點歸納

★ 怎樣快速記憶初一數學公式

★ 七年級英語必備知識點總結

★ 七年級語文知識點梳理

七年級下數學知識點1

第一章 相交線與平行線

一、知識框架

二、知識概念

1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內,不相交的兩條直線叫做平行線。

5.同位角、內錯角、同旁內角:

同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內錯角:∠2與∠6像這樣的一對角叫做內錯角。

同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

8.對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

9.定理與性質

對頂角的性質:對頂角相等。

10垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

12.平行線的性質:

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內錯角相等,兩直線平行。

判定3:同旁內角相等,兩直線平行。

本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特徵,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特徵以及有關圖形平移變換的性質,利用平移設計一些優美的圖案. 重點:垂線和它的性質,平行線的判定 方法 和它的性質,平移和它的性質,以及這些的組織運用. 難點:探索平行線的條件和特徵,平行線條件與特徵的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。

七年級下數學知識點2

第一章 平面直角坐標系

一.知識框架

二.知識概念

1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)

2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4.坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。

5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以後學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。

七年級下數學知識點3

第一章 三角形

一.知識框架

二.知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

12.公式與性質

三角形的內角和:三角形的內角和為180°

三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

多邊形內角和公式:n邊形的內角和等於(n-2)·180°

多邊形的外角和:多邊形的內角和為360°。

多邊形對角線的條數:

(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。

第八章 二元一次方程組

一.知識結構圖

二、知識概念

1.二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。

5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。

7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。

本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法. 重點:二元一次方程組的解法,列二元一次方程組解決實際問題. 難點:二元一次方程組解決實際問題

七年級下數學知識點4

第九章 不等式與不等式組

一.知識框架

二、知識概念

1.用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。

3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。

7.定理與性質

不等式的性質:

不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。

不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。

不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型並應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。

七年級下數學知識點5

第十章 數據的收集、整理與描述

一.知識框架

二.知識概念

1.全面調查:考察全體對象的調查方式叫做全面調查。

2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。

3.總體:要考察的全體對象稱為總體。

4.個體:組成總體的每一個考察對象稱為個體。

5.樣本:被抽取的所有個體組成一個樣本。

6.樣本容量:樣本中個體的數目稱為樣本容量。

7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。

8.頻率:頻數與數據總數的比為頻率。

9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。

本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈢ 北師大版七年級下冊數學 第一章 整式的乘除《同底數冪的乘法》

與底的乘方的運算是整式乘除這一章的重要部分,在考試的計算問題中是高頻率的考點。 但這部分知識點比較單一,是與純底冪的運算,包括注意指數的變化和底的變化。
但是,存在著很多細節。 如果這些細節處理不好,就容易出現計算錯誤。 所以,這也是歷代學生中失誤率最高、容易失分的部分。 學生們必須更加細心地學習。
讓我們來看看乘方運算最基本的規律。 應用定律運算時,請注意以下事項:
1 )當冪底數相同且為乘法時,規律的前提條件是底數a可以是具體的數字字元,或者可以是單個或多項式。
2 )指數為1時,不要誤認為沒有指數
3 )不要把與底數乘方的乘法與整式加法混淆。 關於乘法,只要底數是相同的指數就可以進行加法運算。 關於加法,不僅底數相同,而且指數必須相同才能進行加法運算。
這些計演算法則在計算時是根據實際情況需要的,所以學生們要做的第一件事就是用自己的記憶方式把這些法則掌握好,只有這樣才能在計算時有一定的指導基礎。
即使乘以底數的冪,底數也不會改變,而是加上指數。
正確理解:如果底數相同,乘以兩個冪時底數不變,其指數會相加。
這意味著,如果是兩個不同底的冪,那麼要使用規律,就必須變換為同底。
也就是說,底數最簡單的情況下無法繼續下去。
變化不能把這兩個乘方相加。
基數冪法公式的應用基本見於簡約化評價問題。 在這種情況下,一般要求同學將整體代入給定的條件,但是在帶入之前將求出的式子簡化,具體的解根據乘方的公式帶入。
與底乘方的乘法最容易混淆的一點是,當底乘方的乘法和加法混合在一起時,很多同學很容易就加了,沒有考慮。
與底數的乘方的乘法運算,只要底數相同,就將指數相加即可,並世悶要求加法定律。
如果不僅底數相等,而且指數也必須相等。
而且指數和底數都沒有變化,只是系數相加。
這一點的錯誤率和歷年是計算中最高最容易出錯的,希望同學們在計算的時候能記住唐老師對這一部分的分析,從而有助於避免這個陷阱。
最後寫。 與底數乘方的乘法是整式乘法手消和因式分解這一章中非常重要的部分。
在考題中出現的時候,往往是多種運算。
知識點統一了,要讓大家自由使用每個知識點。 這樣,在計算的時候就不會因為一小部分的錯誤而導致整個問題的失分。
與底數的乘方的乘法相對來說比較簡單,但這樣的畢返知純粹計算要充分注意。 如果數字元號稍有錯誤,整個問題就會丟失。

自考/成考有疑問、不知道自考/成考考點內容、不清楚當地自考/成考政策,點擊底部咨詢官網老師,免費領取復習資料:https://www.87dh.com/xl/

㈣ 七年級數學下冊第一章九個公式

七年級數學下冊第一章基本概念及公式法則

 整式的乘法:
包括(單項式)與(單項式)相乘;(單項式)與(多項式)相乘;(多項式)與(多項式)相乘
單項式與單項式相乘的運演算法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,則連同它的指數作為積的一個因式。
 整式乘法法則:
1、同底數的冪相乘:
法則:同底數的冪相乘,底數不變,指數相加。數學符號表示:am.an=am+n(其中m、n為正整數)
2、冪的乘方:
法則:冪的乘方,底數不變,指數相乘。數學符號表示:(am)n=amn(其中m、n為正整數)
3、積的乘方:
法則:積的乘方,先把積中各因式分別乘方,再把所得的冪相乘。(即等於積中各因式乘方的積。)
數學符號表示:(ab)n=anbn(其中n為正整數)
4、單項式與單項式相乘:
把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。
5、單項式與多項式相乘:
就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
6、多項式與多項式相乘: 先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
 整式乘法運算: 單項式乘以單項式法則:
單項式與單項式相乘,利用乘法交換律和結合律,把它們的系數、相同字母的冪分別相乘,其餘的字母連同它的指數不變,一起作為積的因式.
註:單項式乘以單項式,實際上是運用了乘法結合律和同底數的冪的運演算法則完成的。 ①.積的系數等於各因式系數的積,先確定符號,再計算絕對值.這時容易出現的錯誤是,將系數相乘與指數相加混淆,
如2a3·3a2=6a5,而不要認為是6a6或5a5.
②.相同字母的冪相乘,運用同底數冪的乘法運算性質.
③.只在一個單項式里含有的字母,要連同它的指數作為積的一個因式. ④.單項式乘法法則對於三個以上的單項式相乘同樣適用. ⑤.單項式乘以單項式,結果仍是一個單項式. 單項式乘以多項式的運演算法則:
單項式與多項式相乘,就是根據乘法分配律用單項式去乘多項式的每一項,轉化為單項式與單項式的乘法,然後再把所得的積相加.
法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加.
方法總結:在探究多項式乘以多項式時,是把某一個多項式看成一個整體,利用分配律進行計算,這里再一次說明了整體性思想在數學中的應用。

㈤ 七年級數學下冊內容是什麼

七年級數學下冊內容是如下:

第一章:有理數

第二章:整式的加減

第三章:一元一次方程

第四章:圖形認識初步

第五章:相交線與平分線

第六章:平面直角座標系

第七章:三角形

第八章:二元一次方程組

第九章:不等式與不等式組

第十章:資料的收集、整理與描述

㈥ 七年級下冊數學第1章重點知識總結

(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
為這個浪費了好多時間

㈦ 七年級下冊數學第一單元知識總結

第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.

二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系雹判數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式鏈肆配,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一棚指項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

㈧ 浙教版七年級數學下冊笫一章難嗎

不難。浙教版七年級首氏數學下冊第一章碰盯《小數》相對來說並不難。這一章主要講解小數的定義、計數和四則笑芹和運算,重點是小數的加減乘除和小數與分數的轉化。小數是數學中非常基礎的概念之一,是後續數學學習的基礎,因此建議認真學習和掌握。

㈨ 七年級數學下冊學什麼內容

七年級數學下冊學什麼內容

第五章:相交線與平分線
第六章:平面直角座標系
第七章:三角形
第八章:二元一次方程組
第九章:不等式與不等式組
第十章:資料的收集、整理與描述
有什麼問題可以問我。

七年級數學下冊第一章內容

全等三角形 重點:1.4與1.5合訂 1,了解全等三角形的概念,會用疊合等方法判定是否全等 2,了解全等三角形的概念 3,探索並掌橋鬧握2個三角形全等的條件 4,了解三角形的穩定性 5,會用全等三角的性質判定角之間線段之間的互相關系 總結:1.4全等三角形的對應邊相等,對應角相等 1.5重點:1,三邊對應響等的2個三角形全等,簡稱SSS或邊邊邊 2,有一個角和夾這個角的兩邊對應相等的2個三角形全等,簡稱SAS或邊角邊 3,線段垂直平分線上的點到線段兩端點的距離相等 4,有兩個角呵這兩個角對應相等的兩個三角形全等,簡稱ASA或角邊角 5,兩個角呵其中一角的對應相等的兩個三角形全等,簡稱角角邊或AAS 6,角平分見上的點到角兩邊的距離相等 1.6 重點:1,了解線段的垂直平分線的概念,了解線段的垂直平分線的點到線段兩段的距離相等 2,了解角平分線上的點到角兩邊的距離相等 3,會用直尺呵圓規做角平分線呵線段的垂直平分線。會用直尺呵圓規作1個角等於已知角。會用直尺呵圓規作三角形:已知三邊作三角形,已知兩邊及其夾角作三角形,已

七年級數學都學什麼內容,

學初一的課程

七年級數學上冊學什麼內容的

咱不知道你是哪個版本的 就來回答了
人教版
封面
第一章 有理數
1.1 正數和負數
閱讀與思考 用正負數表示加工允許誤差
1.3 有理數的加減法
實驗與探究 填幻方
閱讀與思考 中國人最先使用負數
1.4 有理數的乘除法
觀察與思考 翻牌游戲中的數學道理
1.5 有理數的乘方
數學活動
小結
復習題1
第二章 整式的加減
2.1 整式
閱讀與思考 數字1與字母X的對話
2.2 整式的加減
資訊科技應用 電子表格與資料計算
數學活動
小結
復習題2
第三章 一元一次方敏談程
3.1 從算式到方程
閱讀與思考 「方程」史話
3.2 解一元一次方程(一)——合並同類項與移項
實驗與探究 無限迴圈小數化分數
3.3 解一元一次方程(二)——去括弧與去分母
3.4 實際問題與一元一次方程
數學活動
小結
復習題3
第四章 圖形認識初步
4.1 多姿多彩的橋消碰圖形
閱讀與思考 幾何學的起源
4.2 直線、射線、線段
閱讀與思考 長度的測量
4.3 角
4.4 課題學習 設計製作長方體形狀的包裝紙盒
數學活動
小結
復習題4
部分中英文詞彙索引

七年級數學下冊6.1節

要圖片嗎?

七年級數學下冊91頁

91頁 復習題7 第7題
解:∵∠C+∠ABC+∠A=180°,∴∠C+∠C+(1/2)∠C=180°,解得∠C=72°
又∵BD是AC上的高,∴∠BDC=90°所以∠DBC=90°-72°=18°

七年級數學下冊評價

1.(1)如圖,判定DECB的條件是
A.∠E=∠DCA B.∠DCE=∠E
C.∠E=∠CDE D.∠BCE=∠E
(2)如圖,若要得到DEBC,則需要的條件是
A.CD⊥AB,GF⊥AB B.∠ADF+∠ABC=180°
C.∠DEC+∠BCE=180° D.∠BGF=∠DCB
(3)不相鄰的兩個直角,如果它們有一條公共邊,那麼另一邊相互
A.平行 B.垂直
C.平行或垂直 D.平行或垂直或在同一條線上
2如圖,∠1=∠2,∠2與∠3互補.
(1)因為∠1=∠2,所以
(2)因為∠2+∠3=180°,所以
3.如圖,∠A=120°,∠B=∠D=60°.試判斷圖中哪些直線平行,為什麼?
4.如圖,當∠1=∠3時,直線a、b平行嗎?當∠2+∠3=180°時,直線a、b平行嗎?為什麼?
5.請你設計一種簡單而又容易操作的方法,檢驗一個四邊形的課桌面的對邊是否平行,並與同學交流.
應該是吧

七年級數學下冊圖片

圖在哪??

七年級數學下冊論文

七年級數學下冊 數學建模 論文 推薦591代寫論文網 給你,上面各專業的論文案例都有。可以借鑒可以拼湊,也可以找那兒的老師代寫,挺負責的。誠信也不錯。你自己看著辦吧

七年級數學下冊 冪的乘方

(-0.125)^8*2^30
=0.125^8*2^30
=0.125^8*(2^3)^10
=0.125^8*8^10
=0.125^8*8^8*8^2
=(0.125*8)^8*64
=1^8*64
=64

㈩ 請求七年級下冊數學各章知識重點總結

第一章 有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。

1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。

1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。

2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。

第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。

3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。

第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。

基本是這些,其他需要自己運用知識答題!(以上是七上的)七下:第一章:三角形的初步認識
主要性質:
(1) 三角形任何兩邊的和大於第三邊。
(2) 三角形三個內角的和等於180°。三角形的一個外角等於的它不相鄰的兩個內角的和。
(3) 全等三角形的對應邊相等,對應角相等。
(4) 有三邊對應相等的兩個三角形全等(簡寫成「邊邊邊」或「SSS」);有一個角和夾這個角的兩邊對應相等的兩個三角形全等(簡寫成「邊角邊」或「SAS」);有兩個角和這兩個角的夾邊對應相等的兩個三角形全等(簡寫成「角邊角」或「ASA」);有兩個角和其中一個角的對邊對應相等的兩個三角形全等(簡寫成「角角邊」或「AAS」)
(5) 線段垂直平分線上的點到線段兩端點的距離相等。角平分線上的點到角兩邊的距離相等。
第二章:圖形和變換
主要性質
(1) 對稱軸垂直平分連結兩個對稱點之間的線段,軸對稱變換不改變圖形的形狀和大小。
(2) 平移變換不改變圖形的形狀、大小和方向,並且連接對應點的線段平行而且相等。
(3) 旋轉變換不改變圖形的大小和形狀,並且對應點到旋轉中心的距離都相等,對應點與旋轉中心連線所成的角度都等於旋轉的角度。
(4) 相似變換不改變圖形中每一個角的大小;圖形中的每條線段都擴大(或縮小)相同的倍數。
第三章:事件的可能性
(1)在一定條件下必然發生的事件叫做必然事件;在一定條件下必然不會發生的事件叫做不可能事件;在一定條件下,可能發生也可能不發生的的事件稱為不確定事件(或隨機事件)
(2)在數學上,事件發生的可能性的大小也稱為事件發生的概率.必然事件發生的概率為1或100%,不可能事件發生的概率為0,若用P表示不確定事件發生的概率,則0<P<1
第四章:
含有兩個未知數,且含有未知數的項的次數都是一次的方程叫做二元一次方程,使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。
由兩個一次方程組成,且含有兩個未知數的方程組,叫做二元一次方程組。同時滿足二元一次方程組中各個方程的解,叫做二元一次方程組的解。
基本思路
二元一次方程 消元 一元一次方程
應用方程組解決實際問題的步驟
理解問題(審題,搞清已知和未知,分析數量關系)
制訂計劃(考慮如何根據等量關系設元,列出方程組)
執行計劃(列出方程組並求解,得出答案)
回顧(檢查和反思解題過秤,檢驗答案的正確性以及是否符合題意)
主要方法和技能
用代入法和加減法解二元一次方程組
應用二元一次方程組解決簡單的實際問題
第五章
整數指數冪及其運算的基本法則

整式的乘法法則
單項式與單項式相乘,把它們的系數、同底數冪分別相乘,其餘字母連同它的指數不變,作為積的因式
單項式和多項式相乘,就是用單項式去乘多項式的每項,再把所得的積相加。
多項式和多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加
整式的除法法則
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式。
多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加。
第六章
1.分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變。即

其中M是不等於零的整式。
2.分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
3.同分母的分式相加減,把分子相加減,分母不變。

4.同分母不相同的幾個分式,化成分母相同的分式,叫做通分。經過通分,異分母分式的加減就轉化成同分母分式的加減。
5.解分式方程必須驗根.把求得的根代入原方程,或代入原方程兩邊所乘的公分母,使分式為零的根,叫做增根,增根必須捨去。 七年級數學下期復習提綱:一、 概念知識1、 單項式:數字與字母的積,叫做單項式。2、 多項式:幾個單項式的和,叫做多項式。3、 整式:單項式和多項式統稱整式。4、 單項式的次數:單項式中所有字母的指數的和叫單項式的次數。5、 多項式的次數:多項式中次數最高的項的次數,就是這個多項式的次數。6、 餘角:兩個角的和為90度,這兩個角叫做互為餘角。7、 補角:兩個角的和為180度,這兩個角叫做互為補角。8、 對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。9、 同位角:在「三線八角」中,位置相同的角,就是同位角。10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。18、全等圖形:兩個能夠重合的圖形稱為全等圖形。19、變數:變化的數量,就叫變數。20、自變數:在變化的量中主動發生變化的,變叫自變數。21、因變數:隨著自變數變化而被動發生變化的量,叫因變數。22、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形。23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。24、垂直平分線:線段是軸對稱圖形,它的一條對稱軸垂直於這條線段並且平分它,這樣的直線叫做這條線段的垂直平分線。(簡稱中垂線)二、 計算能力(A) 整式的計算。1、 整式的加減去括弧,合並同類項!2、 冪運算(七個公式)① 同底數冪相乘:底數不變,指數相加。 ②冪的乘方:底數不變,指數相乘。③積的乘方:等於每個因數乘方的積。 ④同指數冪相乘:指數不變,底數相乘。

閱讀全文

與7年級下冊數學第一章是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1692
西安瑞禧生物科技有限公司怎麼樣 瀏覽:949
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1642
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050