① 初一數學有理數知識點的歸納
初一數學的有理數是初中數學的一大重點,所以想要考好數學,不能不學好有理數。以下是我分享給大家的初一數學有理數知識點,希望可以幫到你!
初一數學有理數知識點
一.知識框架
二.知識概念
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類:①②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0a+b=0a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那麼的倒數是;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式襪野為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的帆梁任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運演算法則:先乘方,後乘除,最後加減.
初一數學角的知識點
角的種類:角的大小與邊的長短沒有關系;角告轎喊的大小決定於角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大於0°,小於90°的角叫做銳角。
直角:等於90°的角叫做直角。
鈍角:大於90°而小於180°的角叫做鈍角。
平角:等於180°的角叫做平角。
優角:大於180°小於360°叫優角。
劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等於360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等於零度的角。
餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。
對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。
還有許多種角的關系,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)!
初一數學幾何圖形分類知識點
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和稜柱,稜柱又可分為直稜柱和斜稜柱,稜柱體按底面邊數的多少又可分為三稜柱、四稜柱、N稜柱;
稜柱體積統一等於底面面積乘以高,即V=SH,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;
棱錐體積統一為V=SH/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式V=4πR3/3,
其他不常用分類:圓台、稜台、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
註:正方形既是矩形也是菱形。
猜你喜歡:
1. 初一數學第1章有理數知識點總結
2. 初一數學有理數知識點
3. 人教版七年級數學復習知識點
4. 七年級數學上冊“有理數”的知識點
5. 初一數學知識點整理
6. 初一有理數知識點匯總
② 七年級數學第一章有理數有那些基本概念
有理數包括整數和分數。一切有理數都可以化成分數的形式。
在有理數范圍內:
整數包含有 正整數、0、負鋒頃並整數。
分數包含有 正銀跡分數、負分數。
小數包含有 有限小數、無限循環小數。
分數可稱為小數;小數也可稱乎銷為分數。因為分數和小數可以相互轉換。
③ 初一數學有理數的要點歸納
初一的有理數是重點也是難點,那麼同學們應該如何把握好這個知識點呢?以下是我分享給大家的初一數學有理數的要點,希望可以幫到你!
初一數學有理數的要點
一、知識要點
本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運演算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、正數(positionnumber):大於0的數叫做正數。
2、負數(negationnumber):在正數前面加上負號"-"的數叫做負數。
3、0既不是正數也不是負數。
4、有理數(rationalnumber):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。
5、數軸(numberaxis):通常,用一條直線上的點表示數,這條直線叫做數軸。
數軸滿足以下要求:
(1)在直線上任取一個點表示數0,這個點叫做原點(origin);
(2)通常規定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
(3)選取適當的長度為單位長度。
6、相反數(oppositenumber):絕對值相等,只有負號不同的兩個數叫做互為相反數。
7、絕對值(absolutevalue)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.正數大於0,0大於負數,正數大於負數;兩個負數,絕對值大的反而小。
8、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.
(3)一個數同0相加,仍得這個數。
加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。
加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把後兩個數相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數減法法則:減去一個數,等於加這個數的相反數。表達式:a-b=a+(-b)
10、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數同0相乘,都得0.
乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數同兩個的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數
1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那麼這兩個數的積等於1。
12、有理數除法法則:兩數相除,同號得負,異號得正,並把絕對值相除。0除以任何一個不等於0的數,都得0.
13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(basenumber),n叫做指數(exponent)。
根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。
14、有理數的混合運算順序
(1)"先乘方,再乘除,最後加減"的順序進行;
(2)同級運算,從左到右進行;
(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
15、科學技術法:把一個大於10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即016、近似數(approximatenumber):
17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。
拓展知識:
1、數集:把一些數放在一起,就組成一個數的集合,簡稱數集。
(1)所有有理數組成的數集叫做有理數集;
(2)所有的整數組成的數集叫做整數集。
2、任何有理數都可以用數軸上的一個點來表示,體現了數形結合的數學思想。
3、根據絕對值的幾何意義知道:|a|≥0,即對任何有理數a,它的絕對值是非負數。
4、比較兩個有理數大小的方法有:
(1)根據有理數在數軸上對應的點的位置直接比較;
(2)根據規定進行比較:兩個正數;正數與零;負數與零;正數與負數;兩個負數,體現了分類討論的數學思想;
(3)做差法:a-b>0——a>b;
(4)做商法:a/b>1,b>0——a>b.
初一數學有理數必考要點
(一)正負數
1.正數:大於0的數。
2.負數:小於0的數。
3.0即不是正數也不是負數。
4.正數大於0,負數小於0,正數大於負數。
(二)有理數
1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點後的數字是無限不循環的。如:π)
2.整數:正整數、0、負整數,統稱整數。
3.分數:正分數、負分數。
(三)數軸
1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2.數軸的三要素:原點、正方向、單位長度。
3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(四)有理數的加減法
1.先定符號,再算絕對值。
2.加法運演算法則:同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。
4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
5.a-b=a+(-b)減去一個數,等於加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大小)
1.同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
2.乘積是1的兩個數互為倒數。
3.乘法交換律:ab=ba
4.乘法結合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理數除法
1.先將除法化成乘法,然後定符號,最後求結果。
2.除以一個不等於0的數,等於乘這個數的倒數。
3.兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0。
(七)乘方
1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
3.同底數冪相乘,底不變,指數相加。
4.同底數冪相除,底不變,指數相減。
(八)有理數的加減乘除混合運演算法則
1.先乘方,再乘除,最後加減。
2.同級運算,從左到右進行。
3.如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
(九)科學記數法、近似數、有效數字。
第二章整式(一)整式
1.整式:單項式和多項式的統稱叫整式。
2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3.系數;一個單項式中,數字因數叫做這個單項式的系數。
4。次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5.多項式:幾個單項式的和叫做多項式。
6.項:組成多項式的每個單項式叫做多項式的項。
7.常數項:不含字母的項叫做常數項。
8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變
整理了知識點,我們來看看相關的練習題吧。根據做題的情況分析有哪些知識點是自己還沒有掌握的。
1,從數軸上看,0是()
A,最小整數B,最大的負數C,最小的有理數D最小的非負數
2,一個數的相反數小於它本身,這個數是()
A,非負數B,正數C,0D,負數
3,冬季某天我國三個城市的最高氣溫分別是-10℃,1℃,-7℃,把它們從高到低排列正確的是()
A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃
4,下列說法正確的有()
A,正數和負數統稱為有理數B,有理數是指整數、分數、正有理數、負有理數和0五類C,一個有理數不是整數就是分數D,整數包括正整數和負整數
5,若a、b為有理數,a>0,b<0,且|a|<|b|,那麼下列說法不正確的是()
A,若將數a、b在數軸上表示出來,則a在原點右側,b在原點左側。
B,因正數大於一切負數,所以a>b。
C,若將數a、b在數軸上表示出來,則數a與原點的距離比較b與原點的距離小。
D,在數軸上,表示a,|a|,b的點從左到右依次為a,b,|a|
6,在下列代數式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多項式有()A.2個B.3個C.4個D5個
A、-3x2B、(5a-4b)/7C、(3a+2)/5xD、-2005
初一數學上冊重點知識點
實數:
—有理數與無理數統稱為實數。
有理數:
整數和分數統稱為有理數。
無理數:
無理數是指無限不循環小數。
自然數:
表示物體的個數0、1、2、3、4~(0包括在內)都稱為自然數。
數軸:
規定了圓點、正方向和單位長度的直線叫做數軸。
相反數:
符號不同的兩個數互為相反數。
倒數:
乘積是1的兩個數互為倒數。
絕對值:
數軸上表示數a的點與圓點的距離稱為a的絕對值。一個正數的絕對值是本身,一個負數的絕對值是它的相反數,0的絕對值是0。
數學定理公式
有理數的運演算法則
⑴加法法則:同號兩數相加,取相同的符號,並把絕對值相加;異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
⑵減法法則:減去一個數,等於加上這個數的相反數。
⑶乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘;任何數與0相乘都得0。
⑷除法法則:除以一個數等於乘上這個數的倒數;兩數相除,同號得正,異號得負,並把絕對值相除;0除以任何一個不等於0的數,都得0。
角的平分線:從角的一個頂點引出一條射線,能把這個角平均分成兩份,這條射線叫做這個角的角平分線。
數學第一章相交線
一、鄰補角:兩條直線相交所成的四個角中,有公共頂點,並且有一條公共邊,這樣的角叫做鄰補角。鄰補角是一種特殊位置關系和數量關系的角,即鄰補角一定是補角,但補角不一定是鄰補角。
二、對頂角:是兩條直線相交形成的。兩個角的兩邊互為反向延長線,因此對頂角也可以說成“把一個角的兩邊反向延長而形成的兩個角叫做對頂角”。
猜你喜歡:
1. 初中數學知識點全總結
2. 最新七年級數學上冊知識點總結
3. 初一數學基本知識點總結
4. 初一數學期末復習題有哪些
5. 初一數學重要知識點總結
④ 初一數學有理數的定義
有理數是整數(正整數、0、負整數)和分數的統稱,是整數和分數的集合。同時還是初一數學知識的基礎。下面我為大家整理了初一數學有理數的定義,希望對數學學習有所幫助,供參考。
有理數是整數和分數的集合,哪氏整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限循環的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
有理數集是整數集的擴張。在有理數集內,加法、減法、乘法、除法(除數不為零)4種運算通行無阻。
有理數是實數的緊密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數。依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密)子集,因此它同時具有一個子空間拓撲。
凡能寫成q/p(p,q為整數且p≠0)形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數李陪散;圓周率(3.1415926……)不是有理數亂兄。
(1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大於一切負數;
(4)兩個負數比大小,絕對值大的反而小;
(5)數軸上的兩個數,右邊的數總比左邊的數大;
(6)大數-小數>0,小數-大數<0。
⑤ 初一數學有理數的概念是什麼
有理數是初中數學的重要知識點之一,這篇文章我就給大家分享有理數的概念及相關知識點,供參考!
有理數是指兩個整數的比。有理數是整數和分數的集合。整數也可看做是分母為纖歷昌一的分數。有理數的小數毀扒部分是有限或為無限循環的數。
有理數是實數的緊密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數。依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密)子集,因此它同時具有一個子空間拓撲。
有理數集,即由所有有理數所構成的集合,用黑體字母Q表示。有理數集是實數集的子集。有理數集是一個無窮集,不存在最大值或最小值。有理數集是一個域,即在其中可進行四則運算(0作除數除外),而且對於這些運算,以下的運算律成立(a、b、c等都表示任意的有理數):
1.加法的交換律:【a+b=b+a】
2.加法的結合律爛仿:【a+(b+c)=(a+b)+c】
3.存在加法的單位元0,使【0+a=a+0=a】
4.對任意有理數a,存在一個加法逆元,記作-a,使【a+(-a)=(-a)+a=0】
5.乘法的交換律:【ab=ba】
6.乘法的結合律;【a·(b·c)=(a·b)·c】
7.乘法的分配律:【a(b+c)=ab+ac】
8.存在乘法的單位元1,使得對任意有理數a,有【1×a=a×1=a】
9.對於不為0的有理數a,存在乘法逆元1/a,使【1/a×a=a×1/a=1】
10.【0a=0】說明:一個數乘0還等於0。
⑥ 初一數學上冊有理數的所有公式謝謝、、、
有理數的公式:
①加法的交換律 a+b=b+a。
②加法的結合律 a+(b+c)=(a+b)+c。
③存在數0,使 0+a=a+0=a。
④對任意有理數a,存在一個加法逆元,記作-a,使a+(-a)=(-a)+a=0。
⑤乘法的交換律 ab=ba。
⑥乘法的結合律 a(bc)=(ab)c。
⑦分配律 a(b+c)=ab+ac。
⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a1=a。
⑨對於不為0的有理數a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
有理數的認識
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。由於任何一個整數或分數都可以化為十進制循環小數,反之,每一個十進制循環小數也能化為整數或分數,因此,有理數也可以定義為十進制循環小數。
⑦ 初一(七年級)下冊數學書概念:有理數的概念及其分類
一:關於正、負數的理解
對於正數與負數,態螞不能簡單的理解為:帶「+」的就是正數,帶「-」的就是負數,例如-a不一定就是負數。用正數與負數表示相反意義的量,習慣上把增加、盈利等規定為正,它們相反的量規定為負,正、負是相對而言洞差的。
二:有理數的分類
有理數分為整數和分數
整數分為正整數、零和負整數。分數分納閉皮為正分數和負分數
誤區提示:對有理數進行分類時,易把小數作為單獨的一類,忽視了有限小數和無限循環小數可以化成分數這一特性。
⑧ 初一有理數的概念是什麼
有理數是整數和分數的集合,整數也可看做是分母為一的分數。下面就和我一起了解一下吧,供大家參考。
有理數是「數與代數」領域中的重要內容之一,在現實生活中有廣泛的應用,是繼續學習實數、代數式、方程、不等式、直角坐標系、函數、統計等數學內容以及相關學科知識的基礎。數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限循環的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不循環的數。
有理數集可以用大寫黑正體符號Q代表。但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
(1)正整數、0、負整數、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數;
(2)正整數、0、負整數統稱為整數;
(3)有理數的分類:正有理數、0、負有理數;
(4)數軸:規定了原圓李點、正方向、單位長度的一條直線;(即數軸的三要素)
(5)一般地,當a是正數時,則數軸上表示數a的點在原點的右邊,距離原點a個單位長度;表示數-a的點在原點的左邊,距離原點a個單位長度;
(6)兩點關於原點對稱:一般地,設a是正數,則在數軸上與原點的距離為a的點有兩個,它們分別在原點的左右,表示-a和a,我們稱這兩個點關於原點對稱;
(7)相反數:只有符號不同的兩個數稱為互為相反數;
(8)一般地,a的相反數是-a;特別地,0的相反數是0;
(9)相反數的幾巧茄何意義:數軸上表示相反數的兩個點關於原點對稱;
(10)a、b互為相反數a+b=0;(即相反數之和為0)
(11)a、b互為相反數;(即相反數之商為-1)
(12)a、b互為相反數|a|=|b|;(即相反數的絕對值相等)
(13)絕對值:一般地,在數軸上表示數a的點到原點的距離叫做a的絕對值;(|a|≥0)
(14)一個正數的絕對值是其本身;一個負數的絕對值是其相反數;0的絕對值是0;
(15)絕對值可表示為:|a|={a(a>0)、0(a=0)、-a(a<0)}
(16)|a|/a=1→a>0;|a|/a=-1→a<0;
(17)有理數的比較:在數軸上表示有理數,它橘寬遲們從左到右的順序,就是從小到大的順序。即左邊的數小於右邊的數。(①正數大於0,0大於負數,正數大於負數;②兩個負數,其絕對值大的反而小;)
⑨ 初一數學有理數公式
無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。
數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογο�0�9 ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。
所有有理數的集合表示為 Q,有理數的小數部分有限或為循環。
理數是實數中不能精確地表示為兩個整數之比的數,即無限不循環小數。 如圓周率、2的平方根等。
實數(real munber)分為有理數和無理數(irrational number)。
·無理數與有理數的區別:
1、把有理數和無理數都寫成小數形式時,有理數能寫成有限小數和無限循環小數,
比如4=4.0, 4/5=0.8, 1/3=0.33333……而無理數只能寫成無限不循環小數,
比如√2=1.414213562…………根據這一點,人們把無理數定義為無限不循環小數.
2、所有的有理數都可以寫成兩個整數之比;而無理數不能。根據這一點,有人建議給無理數摘掉「無理」的帽子,把有理數改叫為「比數」,把無理數改叫為「非比數」。本來嘛,無理數並不是不講道理,只是人們最初對它不太了解罷了。
利用有理數和無理數的主要區別,可以證明√2是無理數。
證明:假設√2不是無理數,而是有理數。
既然√2是有理數,它必然可以寫成兩個整數之比的形式:
實數包括有理數和無理數。其中無理數就是無限不循環小數和開根開不盡的數,有理數就包括無限循環小數、有限小數、整數
自然數(natural number)
用以計量事物的件數或表示事物次序的數 。 即用數碼0,1,2,3,4,……所表示的數 。自然數由0開始 , 一個接一個,組成一個無窮集合。自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以作減法或除法,但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不是總能成立的。自然數是人們認識的所有數中最基本的一類,為了使數的系統有嚴密的邏輯基礎,19世紀的數學家建立了自然數的兩種等價的理論棗自然數的序數理論和基數理論,使自然數的概念、運算和有關性質得到嚴格的論述。
序數理論是義大利數學家G.皮亞諾提出來的。他總結了自然數的性質,用公理法給出自然數的如下定義。
自然數集N是指滿足以下條件的集合:①N中有一個元素,記作1。②N中每一個元素都能在 N 中找到一個元素作為它的後繼者。③ 1是0的後繼者。④0不是任何元素的後繼者。 ⑤不同元素有不同的後繼者。⑥(歸納公理)N的任一子集M,如果1∈M,並且只要x在M中就能推出x的後繼者也在M中,那麼M=N。
基數理論則把自然數定義為有限集的基數,這種理論提出,兩個可以在元素之間建立一一對應關系的有限集具有共同的數量特徵,這一特徵叫做基數 。這樣 ,所有單元素集{x},{y},{a},{b}等具有同一基數 , 記作1 。類似,凡能與兩個手指頭建立一一對應的集合,它們的基數相同,記作2,等等 。自然數的加法 、乘法運算可以在序數或基數理論中給出定義,並且兩種理論下的運算是一致的。
自然數在日常生活中起了很大的作用,人們廣泛使用自然數。
「0」是否包括在自然數之內存在爭議,有人認為自然數為正整數,即從1開始算起;而也有人認為自然數為非負整數,即從0開始算起。目前關於這個問題尚無一致意見。不過,在數論中,多採用前者;在集合論中,則多採用後者。目前,我國中小學教材將0歸為自然數!
自然數是整數,但整數不全是自然數。
例如:-1 -2 -3......是整數 而不是自然數
全體非負整數組成的集合稱為非負整數集(即自然數集)
所謂質數或稱素數,就是一個正整數,除了本身和 1 以外並沒有任何其他因子。例如 2,3,5,7 是質數,而 4,6,8,9 則不是,後者稱為合成數或合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(有人認為數目字 1 不該稱為質數)著名的高斯「唯一分解定理」說,任何一個整數。可以寫成一串質數相乘的積。
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質3。
本章關鍵:徹底弄清不等式和等式的基本性質的區別.
(1)不等式概念:用不等號(「≠」、「<」、「>」)表示的不 等關系的式子叫做不等式
(2)不等式的基本性質,它是解不等式的理論依據.
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數值,把它們表示在數軸上,(5)一元一次不等式的概念、解法是本章的重點和核心
(6)一元一次不等式的解集,在數軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數的)一元一次不等式組成
(8).利用數軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數的值,會檢驗一對數值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據給出的應用問題,列出相應的二元一次方程組或三元一次方程組,從而求出問題的解,並能根據問題的實際意義,檢查結果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應用問題.
本章的難點是:
1.會用適當的消元方法解二元一次方程組及簡單的三元一次方程組;
2.正確地找出應用題中的相等關系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應用要達到熟練程度.
本章難點是:對乘法公式結構特徵和公式中字母意義的理解及乘法公式的靈活應用
1.冪的運算性質,正確地表述這些性質,並能運用它們熟練地進行有關計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運演算法則進行運算,
5.體會用字母表示數和用字母表示式子的意義.通過式的變形,深入理解轉化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗 歸納與類比 猜想與證明 生活中的說理 數學中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、餘角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數量關系)兩直線平行(位置關系)
定理:內錯角相等(數量關系)兩直線平行(位置關系)
定理:同旁內角互補(數量關系)兩直線平行(位置關系).
平行線的性質:
兩直線平行,同位角相等
兩直線平行,內錯角相等
兩直線平行,同旁內角互補
由圖形的「位置關系」確定「數量關系」
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統計知識解決現實生活中的實際問題.
難點是:用統計知識解決實際問題.
1.統計初步的基本知識,平均數、中位數、眾數等的計算、
2.了解數據的收集與整理、繪畫三種統計圖.
3.應用統計知識解決實際問題能解決與統計相關的綜合問題.
典型例題從書本上很容易找到。