導航:首頁 > 數字科學 > 數學建模手機電量怎麼達到充分

數學建模手機電量怎麼達到充分

發布時間:2023-05-16 09:20:55

㈠ 如何准備數學建模呢 需要做那些准備呢

如何准備數學建模,需要做這些准備。第一,找一本有關建模的基礎教程,第二,學會一門數學軟體的使用,三,掌握科技論文旋渦狀的寫作方法。

數學模型(Mathematical Model)是一種模擬,是用數學符號、數學式子、程序、圖形等對實際課題本質屬性的抽象而又簡潔的刻畫,數學模型或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般並非現實問題的直接翻版,數學模型的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)。
全網招募小白免費學習,測試一下你是否有資格
想要了解數學建模相關學習的更多內容,可以了解一下廣州中教在線教育科技有限公司(以下簡稱:中教在線)。中教在線的課程從零基礎開始學習,從簡單入門到後期成品出圖老師帶著你一步一步走過來,畢業後還有就業指導課程,助你解決面試難題,助教老師24小時在線答疑。

㈡ 關於數學建模

你好這位朋友,我曾經參加過2004年的數學建模競賽,得了省裡面的一等獎。現在回想起來確實讓人感覺心酸而又興奮和快樂。我也是參加校裡面的建模競賽被選拔過去的。總得來講,你要參加數學建模就要問問自己是不是能吃苦,迎難而上的人?是不是熱愛數學知識及其在生活中應用的人?是不是能夠與別人同舟共濟的人?如果你已經下定決心了那麼我就跟你在這里討論討論吧。數學建模可以說是在做一個項目,它不是一個人的奮斗,而是一個三人團隊的同心協力。建模基本上分為三部分工作,第一部分是:數學模型的建立。第二部分是計算機編程解決問題。第三部分是數學論文的完成。因此針對這三分工作,一個團隊里的三個人應該有所側重,每個人應該在這三個方面的某個有所特長,每個人特長的發揮直接影響到建模的結果。所以,當你要准備參加數學建模的時候,你要給自己定位,究竟自己是要側重哪方面的特長。當然,由於你才剛開始,到時候跟誰組隊也不清楚,那麼就可以全方面發展,到你們組員確定,方向明確的時候,那麼你們就可以專供自己的特長方面。
那麼要如何准備呢?先談談我是如何准備的吧。大二上學期為了參加數學建模,我去校裡面開的有關數學建模的課程(比如:數學模型,運籌學,最優化設計,matlab等)的選修課旁聽。一個學期下來,從原來的不清不楚,到頗有認識,另外我還參加了校數學建模協會,在裡面我可以借到許多數學建模方面的書籍,當然你也可以自己到圖書館去借書看。此外你還可以自己多跟數學系的老師聯系,畢竟是他們了解更多,對你應該有用。參加校建模競賽的時候,我們隊只得了優勝獎(就是三等獎下面的一個獎),但我們沒有放棄,暑假學校裡面接著培訓,也模擬了好幾次,每次都有隊刷下來,而我們隊卻挺到了最後,直到參加全國賽。蠻辛苦的。
關於在建立模型方面,我認為你應該在初期大量閱讀各種模型,增加自己的見識,當然不是說看了就拉到。要帶著思考去看。過一段時間要回顧腦子裡面的模型庫。而編程方面呢,我認為你有必要使自己的能力更加強,因為這部分也很關鍵,你的模型能不能解出來就看這。所以你應該多學習優化演算法、數據結構等,比如遺傳演算法、神經網路、模擬退火、螞蟻演算法、數據結構里的各種搜索演算法、圖演算法。這些演算法你都可以在圖書管裡面借到。並且你要不斷地編程,只有自己去編程才會有收獲!知道嗎!至於論文方面要找個會寫科技論文的,要熟悉word和power point,特別是word的排版,word中圖像的編輯,word中如何畫圖。
說的口都幹了,下面如何選擇就看你了!

㈢ 數學建模方法和步驟

數學建模的主要步驟:

第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建

模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以

高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應

盡量使問題線性化、均勻化。

第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間

的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老

人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱

大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工

具愈簡單愈有價值。

第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,

特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計

算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作

出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差

分析,數據穩定性分析。

數學建模採用的主要方法有:

(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模

型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策

等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。

(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。

(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀

態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構


3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的

可能變化,人為地組成一個系統。

㈣ 關於數學建模

數學建模
數學模型(Mathematical Model)是一種模擬,是用數學符號、數學式子、程序、圖形等對實際課題本質屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)。
過程
模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用
應用方式因問題的性質和建模的目的而異。

大學生數學建模競賽
全國大學生數學建模競賽
全國大學生數學建模競賽是國家教育部高教司和中國工業與應用數學學會共同主辦的面向全國大學生的群眾性科技活動,目的在於激勵學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際問題的綜合能力,鼓勵廣大學生踴躍參加課外科技活動,開拓知識面,培養創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革。競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過普通高校的數學課程。題目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一篇包括模型的假設、建立和求解,計算方法的設計和計算機實現,結果的分析和檢驗,模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標准。 全國統一競賽題目,採取通訊競賽方式,以相對集中的形式進行;競賽一般在每年9月末的三天內舉行;大學生以隊為單位參賽,每隊3人,專業不限。
全國大學生數學建模競賽章程(2008年)
第一條 總則 全國大學生數學建模競賽(以下簡稱競賽)是教育部高等教育司和中國工業與應用數學學會共同主辦的面向全國大學生的群眾性科技活動,目的在於激勵學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際問題的綜合能力,鼓勵廣大學生踴躍參加課外科技活動,開拓知識面,培養創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革。 第二條 競賽內容 競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過高等學校的數學課程。題目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一篇包括模型的假設、建立和求解、計算方法的設計和計算機實現、結果的分析和檢驗、模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標准。 第三條 競賽形式、規則和紀律 1.全國統一競賽題目,採取通訊競賽方式,以相對集中的形式進行。 2.競賽每年舉辦一次,一般在某個周末前後的三天內舉行。 3.大學生以隊為單位參賽,每隊3人(須屬於同一所學校),專業不限。競賽分本科、專科兩組進行,本科生參加本科組競賽,專科生參加專科組競賽(也可參加本科組競賽),研究生不得參加。每隊可設一名指導教師(或教師組),從事賽前輔導和參賽的組織工作,但在競賽期間必須迴避參賽隊員,不得進行指導或參與討論,否則按違反紀律處理。 4.競賽期間參賽隊員可以使用各種圖書資料、計算機和軟體,在國際互聯網上瀏覽,但不得與隊外任何人(包括在網上)討論。 5.競賽開始後,賽題將公布在指定的網址供參賽隊下載,參賽隊在規定時間內完成答卷,並准時交卷。 6.參賽院校應責成有關職能部門負責競賽的組織和紀律監督工作,保證本校競賽的規范性和公正性。 第四條 組織形式 1.競賽由全國大學生數學建模競賽組織委員會(以下簡稱全國組委會)主持,負責每年發動報名、擬定賽題、組織全國優秀答卷的復審和評獎、印製獲獎證書、舉辦全國頒獎儀式等。 2.競賽分賽區組織進行。原則上一個省(自治區、直轄市)為一個賽區,每個賽區應至少有6所院校的20個隊參加。鄰近的省可以合並成立一個賽區。每個賽區建立組織委員會(以下簡稱賽區組委會),負責本賽區的宣傳發動及報名、監督競賽紀律和組織評閱答卷等工作。未成立賽區的各省院校的參賽隊可直接向全國組委會報名參賽。 3.設立組織工作優秀獎,表彰在競賽組織工作中成績優異或進步突出的賽區組委會,以參賽校數和隊數、征題的數量和質量、無違紀現象、評閱工作的質量、結合本賽區具體情況創造性地開展工作以及與全國組委會的配合等為主要標准。 第五條 評獎辦法 1.各賽區組委會聘請專家組成評閱委員會,評選本賽區的一等、二等獎(也可增設三等獎),獲獎比例一般不超過三分之一,其餘凡完成合格答卷者可獲得成功參賽證書。 2.各賽區組委會按全國組委會規定的數量將本賽區的優秀答卷送全國組委會。全國組委會聘請專家組成全國評閱委員會,按統一標准從各賽區送交的優秀答卷中評選出全國一等、二等獎。 3.全國與各賽區的一、二等獎均頒發獲獎證書。 4.對違反競賽規則的參賽隊,一經發現,取消參賽資格,成績無效。對所在院校要予以警告、通報,直至取消該校下一年度參賽資格。對違反評獎工作規定的賽區,全國組委會不承認其評獎結果。 第六條 異議期制度 1.全國(或各賽區)獲獎名單公布之日起的兩個星期內,任何個人和單位可以提出異議,由全國組委會(或各賽區組委會)負責受理。 2.受理異議的重點是違反競賽章程的行為,包括競賽期間教師參與、隊員與他人討論,不公正的評閱等。對於要求將答卷復評以提高獲獎等級的申訴,原則上不予受理,特殊情況可先經各賽區組委會審核後,由各賽區組委會報全國組委會核查。 3.異議須以書面形式提出。個人提出的異議,須寫明本人的真實姓名、工作單位、通信地址(包括聯系電話或電子郵件地址等),並有本人的親筆簽名;單位提出的異議,須寫明聯系人的姓名、通信地址(包括聯系電話或電子郵件地址等),並加蓋公章。全國組委會及各賽區組委會對提出異議的個人或單位給予保密。 4.與受理異議有關的學校管理部門,有責任協助全國組委會及各賽區組委會對異議進行調查,並提出處理意見。全國組委會或各賽區組委會應在異議期結束後兩個月內向申訴人答復處理結果。 第七條 經費 1.參賽隊所在學校向所在賽區組委會交納參賽費。 2.賽區組委會向全國組委會交納一定數額的經費。 3.各級教育管理部門的資助。 4.社會各界的資助。 第八條 解釋與修改 本章程從2008年開始執行,其解釋和修改權屬於全國組委會。

㈤ 【數學建模演算法】(29)數據的統計描述和分析(上)

數理統計 研究的對象是受隨機因素影響的數據,以下數理統計就簡稱統計,統計是以概率論為基礎的一門應用學科。
數據樣本少則幾個,多則成千上萬,人們希望能用少數幾個包含其最多相關信息的數值來體現數據樣本總體的規律。描述性統計就是搜集、整理、加工和分析統計數據,使之系統化、條理化,以顯示出數據資料的趨勢、特徵和數量關系。它是統計推斷的基礎,實用性較強,在統計工作中經常使用。
面對一批數據如何進行描述與分析,需要掌握 參數估計 假設檢驗 這兩個數理統計的最基本方法。
我們將用 Matlab 的統計工具箱(Statistics Toolbox)來實現數據的統計描述和分析。

一組數據(樣本)往往是雜亂無章的,做出它的頻數表和直方圖,可以看作是對這組數據的一個初步整理和直觀描述。
將數據的取值范圍劃分為若干個區間,然後統計這組數據在每個區間中出現的次數,稱為 頻數 ,由此得到一個頻數表。以數據的取值為橫坐標,頻數為縱坐標,畫出一個階梯形的圖,稱為 直方圖 ,或 頻數分布圖
若樣本容量不大,能夠手工做出頻數表和直方圖,當樣本容量較大時則可以藉助Matlab這樣的軟體了。讓我們以下面的例子為例,介紹頻數表和直方圖的作法。

(1)數據輸入
數據輸入通常有兩種方法,一種是在交互環境中直接輸入,如果在統計中數據量比較大,這樣作不太方便;另一種辦法是先把數據寫入一個純文本數據文件data.txt中,數據列之間用空格和Tab鍵分割,之後以data.txt為文件名存放在某個子目錄下,用Matlab中的load命令讀入數據,具體做法是:
先把txt文件移入Matlab的工作文件夾中,之後在Matlab命令行或腳本中輸入:

這樣就在內存中建立了一個變數data它是一個包含有 個數據的矩陣。
為了得到我們需要的100個身高和體重均為一列的數據,我們對矩陣做如下處理:

(2)作頻數表及其直方圖
求頻數用hist函數實現,其用法是:

得到數組(行列均可) 的頻數表。它將區間 等分為 份(預設時 為10), 返回 個小區間的頻數, 返回 個小區間的中點。

同樣的一個函數名hist還可以用來畫出直方圖。
對於本例的數據,可以編寫如下程序畫出數據的直方圖。

得直方圖如下:

下面我們介紹幾種常用的統計量。

算術平均值 (簡稱均值)描述數據取值的平均位置,記作 ,

中位數 是將數據由小到大排序後位於中間位置的那個數值。
Matlab 中 mean(x)返回 x 的均值,median(x)返回中位數。

標准差 定義為:

它是各個數據與均值偏離程度的度量,這種偏離不妨稱為 變異

方差 是標准差的平方 。

極差 是 的最大值與最小值之差。

Matlab 中 std(x)返回 x 的標准差,var(x)返回方差,range(x)返回極差。

你可能注意到標准差 s 的定義(2)中,對 的平方求和卻被 除,這是出於無偏估計的要求。若需要改為被 除,Matlab 可用 std(x,1)和 var(x,1)來實現。

隨機變數 的 階 中心距 為 。

隨機變數 的 偏度 峰度 指的是 的標准化變數 的三階中心矩和四階中心矩:

偏度反映分布的對稱性, 稱為右偏態,此時數據位於均值右邊的比位於左邊的多; 稱為左偏態,情況相反;而 接近 0 則可認為分布是對稱的。

峰度是分布形狀的另一種度量,正態分布的峰度為 3,若 比 3 大得多,表示分布有沉重的尾巴,說明樣本中含有較多遠離均值的數據,因而峰度可以用作衡量偏離正態分布的尺度之一。

Matlab 中 moment(x,order)返回 x 的 order 階中心矩,order 為中心矩的階數。skewness(x)返回 x 的 偏度 ,kurtosis(x)返回 峰度

在以上用 Matlab 計算各個統計量的命令中,若 x 為矩陣,則作用於 x 的列,返回一個行向量。

對例1給出的學生身高和體重,用Matlab 計算這些統計量,程序如下:

統計量中最重要、最常用的是均值和標准差,由於樣本是隨機變數,它們作為樣本的函數自然也是隨機變數,當用它們去推斷總體時,有多大的可靠性就與統計量的概率分布有關,因此我們需要知道幾個重要分布的簡單性質。

隨機變數的特性完全由它的(概率)分布函數或(概率)密度函數來描述。設有隨機變數 ,其分布函數定義為 的概率,即 。若 是連續型隨機變數,則其密度函數 與 的關系為:

上 分位數是下面常用的一個概念,其定義為:對於 ,使某分布函數 的 ,稱為這個分布的上 分位數,記作 。
我們前面畫過的直方圖是頻數分布圖,頻數除以樣本容量 ,稱為頻率, 充分大時頻率是概率的近似,因此直方圖可以看作密度函數圖形的(離散化)近似。

正態分布可以說是最常見的(連續型)概率分布,成批生產時零件的尺寸,射擊中彈著點的位置,儀器反復量測的結果,自然界中一種生物的數量特徵等,多數情況下都服從正態分布,這不僅是觀察和經驗的總結,而且有著深刻的理論依據, 即在大量相互獨立的、作用差不多大的隨機因素影響下形成的隨機變數,其極限分布為正態分布

鑒於正態分布的隨機變數在實際生活中如此地常見,記住下面 3 個數字是有用的:

若 為相互獨立的、服從標准正態分布 的隨機變數,則它們的平方和 服從 分布,記作 , 稱為自由度,它的期望 ,方差 。

若 ,且相互獨立,則 服從 分布,記作 稱自由度。
分布的密度函數曲線和 曲線形狀相似。理論上 時, ,實際上當 時它與 就相差無幾了。

若 ,且相互獨立,則 服從 分布,記作 稱自由度。

Matlab統計工具箱中有27種概率分布,這里只對上面所述4中分布列出命令的字元:

工具箱對每一種分布都提供五類函數,其命令的字元是:

當需要一種分布的某一種函數時,將以上所列的分布命令字元與函數命令字元接起來,並輸入自變數(可以是標量、數組或矩陣)和參數就行了,如:

設總體 , 為一容量 的樣本,其均值 和標准差 由式(1),(2)確定,則用 和 構造的下面兩個分布在統計中是非常有用的。



設有兩個總體 和 ,及由容量分別為 的兩個樣本確定的均值 和標准差 ,則:


其中:
且要求

閱讀全文

與數學建模手機電量怎麼達到充分相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1692
西安瑞禧生物科技有限公司怎麼樣 瀏覽:949
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1641
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050