A. 數學中為什麼要學習分式
多項式除以多項式,就會得到分式。
B. 數學中分式的定義是什麼
分式
的基本
概念
I.
定義
:
整式
A除以整式B,可以表示成A/B的
形式
。如果
除式
B中含有
字母
,那麼稱為分式(fraction)。
注:A÷B=A×1/B。有時把
寫成負指數即A??B-1,只是在形式上有所不同,而本質里沒有區別.
II.組成:在分式
中A稱為分式的分子,B稱為分式的
分母
。
III.意義:對於任意一個分式,分母都不能為0,否則分式
無意義
。
IV.分式值為0的條件:在分母不等於0的前提下,分子等於0,則
分數
值為0。
注:分式的概念包括3個方面:①分式是兩個整式相除的商式,其中分子為被除式,分母為除式,
分數線
起除號的作用;②分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區別整式的重要依據;③在任何情況下,分式的分母的值都不可以為0,否則分式無意義。這里,分母是指除式而言。而不是只就分母中某一個字母來說的。也就是說,分式的分母不為零是隱含在此分式中而無須註明的條件。
C. 初二數學下冊分式要怎麼學好
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
只要知道這些,做題就okay了。
好評喲,親。
D. 數學中的分式怎麼做
遇到分式相加減,首先觀察比較,辨別是同分母分式相加減,還是異分母分式相加減;若是同分母分式相加減,分母不變,只把分子相加減,即若是異分母分式相加減,先通分,變為同分母分式,再加減,即運算的結果,能約分的一定要約分,將結果化為最簡形式.
整式A除以整式B,可以用表示成A/B的形式,如果除式B中含有字母,那麼稱A/B為分式
分式的基本性質
分式的分子與分母都乘以(或除以)同一個不等與零的整式,分式的值不變希望能幫到你。
E. 數學初中 關於分式的【急】
化簡求值題,必須先—化簡—,再—求值—.
只含分式或整式,並且——分母里含有未知數————的方程叫做分式方程;
解分式方程時,使分式方程時,使分母為零的根叫做—增根—
.
解分式方程的基本步驟:(1)——去分母—,(2)—解方程—,(3)——驗根————.
詳細說明:
①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。
F. 數學。分式是什麼。
定義:形如 A/B,A、B是整式,B中含有字母且B不等於0的式子叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。 (1)分式有意義條件:分母不為0(2)分式無意義條件:分母為0;(3)分式值為0條件:分子為0且分母不為0;(4)分式值為正(負)數條 件:同號得正,異號得負 判斷一個式子是否是分式,不要看式子是否是A/ B的形式,關鍵要滿足:(1)分式的分母中必須含有字母。(2)分母的值不能為零。若分母的值為零,則分式無意義。
G. 數學分式
I.定義:整式A除以整式B,可以表示成A/B的形式.如果除式B中含有字母,那麼稱為分式(fraction).注:A÷B=A×1/B.有時把 寫成負指數即A��B-1,只是在形式上有所不同,而本質里沒有區別.II.組成:在分式 中A稱為分式的分子,B稱為分式的分母.III.意義:對於任意一個分式,分母都不能為0,否則分式無意義.IV.分式值為0的條件:在分母不等於0的前提下,分子等於0,則分數值為0.注:分式的概念包括3個方面:①分式是兩個整式相除的商式,其中分子為被除式,分母為除式,分數線起除號的作用;②分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區別整式的重要依據;③在任何情況下,分式的分母的值都不可以為0,否則分式無意義.這里,分母是指除式而言.而不是只就分母中某一個字母來說的.也就是說,分式的分母不為零是隱含在此分式中而無須註明的條件.
H. 數學分式是什麼呢
分式的定義是如果A、B表示兩個整式,並且B中含有字母,那麼式子A / B 就叫做分式。分式作為初中數學當中的重點內容之一,中考數學對其相關知識的考查一直是一個熱點。
分式的條件:
1、分式有意義條件:分母不為0。
2、分式值為0條件:分子為0且分母不為0。
3、分式值為正(負)數條件:分子分母同號得正,異號得負。
4、分式值為1的條件:分子=分母≠0。
5、分式值為-1的條件:分子分母互為相反數,且都不為0。
分數計算方法:
分數的單位是1。
5/8的分數單位是1/8。
它有5個這樣的分數單位,再加上3個這樣的分數單位,就等於一。
分數單位是指把單位1平均分成若干份,取其中一份的數,也就是說分子是1,分母是正整數的分數,5/8的分數單位是1/8,共包含5個同樣的分數單位,再加上3個同樣的分數單位等於1。
I. 數學分式是什麼
分母中有未知數的式子,如:5/2a
J. 初中數學分式講堂
分式
第一節
分式的基本概念
形如A/B,A、B是整式,B中含有未知數且B不等於0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
掌握分式的概念應注意:判斷一個式子是否是分式,不要看式子是否是A/B的形式,關鍵要滿足。
(1)分式的分母中必須含有未知數。(2)分母的值不能為零,如果分母的值為零,那麼分式無意義。由於字母可以表示不同的數,所以分式比分數更具有一般性。整式和分式統稱為有理式。
帶有根號的式子叫做無理式,無理式和有理式統稱代數式
1.約分:
把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。
2.分式的乘法法則:
兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。3.
分式的加減法法則:
同分母的分式相加減,分母不變,把分子相加減。4.通分:
異分母的分式可以化成同分母的分式,這一過程叫做通分。如:3/2和2/3可化為9/6和4/6.即:3*3/2*3,2*2/3*2!
5.異分母分式的加減法法則:
異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算。(1).定義:一般地,如果A,B表示兩個整式,並且B中含有字母,那麼式子
A/B
叫做分式(fraction)。
註:A/B=A×1/B
(2).組成:在分式
中A稱為分式的分子,B稱為分式的分母。
(3).意義:對於任意一個分式,分母都不能為0,否則分式無意義。
(4).分式值為0的條件:在分母不等於0的前提下,分子等於0,則分式值為0。
注:分式的概念包括3個方面:①分式是兩個整式相除的分式,其中分子為被除式,分母為除式,分數線起除號的作用;②分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區別整式的重要依據;③在任何情況下,分式的分母的值都不可以為0,否則分式無意義。這里,分母是指除式而言。而不是只就分母中某一個字母來說的。也就是說,分式的分母不為零是隱含在此分式中而無須註明的條件。
第二節
分式的基本性質和變形應用
1.分式的基本性質:分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C
A/B=A÷C/B÷C
(A,B,C為整式,且C≠0)
2.約分:把一個分式的分子和分母的公因式約去,這種變形稱為分式的約分.
3.分式的約分步驟:(1)如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去.(2)分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去.
注:公因式的提取方法:系數取分子和分母系數的最大公約數,字母取分子和分母共有的字母,指數取公共字母的最小指數,即為它們的公因式.
4.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.
5.通分:把幾個異分母分式分別化為與原分式值相等的同分母分式,叫做分式的通分.
6.分式的通分步驟:先求出所有分式分母的最簡公分母,再將所有分式的分母變為最簡公分母.同時各分式按照分母所擴大的倍數,相應擴大各自的分子.
注:最簡公分母的確定方法:系數取各因式系數的最小公倍數,相同字母的最高次冪及單獨字母的冪的乘積.
注:(1)約分和通分的依據都是分式的基本性質2.(2)分式的約分和通分都是互逆運算過程.
編輯本段第三節
分式的四則運算
1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd
3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b
*
c/d=ac/bd
4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘.a/b÷c/d=ad/bc
(2).除以一個分式,等於乘以這個分式的倒數:a/b÷c/d=a/b*d/c
第四節
分式方程
1.分式方程的意義:分母中含有未知數的方程叫做分式方程.
2.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).
分式方程的解法
①去分母{方程兩邊同時乘以最簡公分母(最簡公分母:①系數取最小公倍數②出現的字母取最高次冪③出現的因式取最高次冪),將分式方程化為
正式方程;若遇到互為相反數時.不要忘了改變符號};②按解整式方程的步驟(移項,若有括弧應去括弧,注意變號,合並同類項,
系數化為1)求出未知數的值;③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).
驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。若解出的根是增根,則原方程無解。
如果分式本身約分了,也要帶進去檢驗。
在列分式方程解應用題時,不僅要檢驗所的解是否滿足方程式,還要檢驗是否符合題意。
一般的,解分式方程時,去分母後所得整式方程的解有可能使原方程中分母為零,因此要將整式方程的解代入最簡公分母,如果最簡公分母的值不為零,則是方程的解.
歸納:
解分式方程的基本思路是將分式方程化為整式方程,具體做法是「去分母」,即方程兩邊同乘最簡公分母,這也是解分式方程的一般思路和做法。
例題:
(1)x/(x+1)=2x/(3x+3)+1
兩邊乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
2x=-3
x=-3/2
分式方程要檢驗
經檢驗,x=-3/2是方程的解
(2)2/(x-1)=4/(x^2-1)
兩邊乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
分式方程要檢驗
把x=1帶入原方程,使分母為0,是增根。
所以原方程2/x-1=4/x^2-1
無解
一定要檢驗!!
檢驗格式:把x=a
帶入最簡公分母,若x=a使最簡公分母為0,則a是原方程的增根.若x=a使最簡公分母不為零,則a是原方程的根.
注意:可憑經驗判斷是否有解。若有解,帶入所有分母計算:若無解,帶入無解分母即可