A. 大學數學怎麼學學好大學數學的8個方法
進入大學,每個人都應該先做個自我反省,在學習過程中將會出現很多與過去不同的一面,尤其是在數學學習上,我整理了數學學習相關內容,希望能幫助到您。
學好大學數學的8個方法
1)大一生大都自我感覺良好,認為自己的學習方法是成功的。自己能考上不錯的本科,就說明自己在學習上有一套。自己高中怎樣學,大學還怎樣學,就一定能成功。不知道改進學習方法的必要性。
2)缺少迎難而上的思想准備。基礎知識大滑坡,基本技能大退步,頭腦時常出現空白。學習時跟不上教學的進度與要求。
3)對大學課程的學習特點,缺少全面准確的了解。對大學生應該掌握的學習方法,缺少系統的學習和掌握。
提高大學數學學習成績的關鍵:
大學生學數學,靠的是一個字:悟!
藉助這8個方法,教你更好領悟高數
1
先看筆記後做作業
有的學生感到,老師講過的,自己已經聽得明明白白了。但是,為什麼自己一做題就困難重重了呢?其原因在於,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。
因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。
2
做題之後加強反思
現在正做著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結一下自己的收獲。
要總結出:這是一道什麼內容的題,用的是什麼方法。做到知識成片,問題成串,構建起一個內容與方法的科學的網路系統。
要看看自己做對了沒有;還有什麼別的解法;題目處於知識體系中的什麼位置;解法的本質什麼;題目中的已知與所求能否互換,能否進行適當增刪改進。
3
主動復習和總結
進行章節總結是非常重要的。
怎樣做章節總結呢?
①要把課本,筆記,校期末測驗試卷,都從頭到尾閱讀一遍。
②把本章節的內容一分為二,一部分是基礎知識,一部分是典型問題。
③在基礎知識的疏理中,要羅列出所學的所有定義,定理,法則,公式。
④把重要的,典型的各種問題進行編隊。
⑤總結那些尚未歸類的問題,作為備注進行補充說明。
4
重視改錯,錯不重犯
一定要重視改錯工作,做到錯不再犯。
5
積累資料隨時整理
把課堂筆記,練習,試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內容。這樣,復習資料才能越讀越精,一目瞭然。
6
精挑慎選課外讀物
大學數學考的是學生解決常規題的能力。作為一名大學生,如果還想圍著自己的老師轉,是不可能的,老師一般一下課就走,所以這種方法會存在著很大的局限性。因此,要想學好數學,必須打開一扇門,看看外面的世界。當然,也不要自立門戶,另起爐灶。一旦脫離校內教學和自己的老師的教學體系,也必將事倍功半。
7
配合老師主動學習
大學生必須提高自己學習的主動性,隨時預防掛科。
8
合理規劃步步為營
大學的學習表面上是輕松的,實則是暗藏危機。沒有了高中老師的步步緊抓,許多自製力差,又沒計劃性的學生任由自己墮落。所以,要想能迅速取得進步,就要給自己制定一個較長遠的切實可行的學習目標和計劃。此外,還要給自己制定學習計劃,詳細地安排好自己的零星時間,並及時作出合理的微量調整。
大學數學怎麼學?
眾所周知,數學是一門富有魅力又極具挑戰性的學科。有些時候,花了大量的時間,但還是沒有什麼結論或是還是理解不了一些過程,而且,往往會有一種挫敗感——為什麼別人想的到而我想不到。可見,學好數學絕不是一件易事,需要付出大量的努力,需要大量的積累和細心體會。但是,大家也不必太過害怕或是灰心,要相信,只要付出了努力,只要有不斷地、耐心地思考,一定能夠理解好所學內容,能夠解決問題。
對於剛入學的新生,要面對的專業課就是數學專業中基礎中的基礎:數學分析、高等代數和解析幾何,正好對應數學的三大核心領域:分析、代數、幾何。
數學分析是指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。數學分析的主要內容是微積分學,微積分學的理論基礎是極限理論,極限理論的理論基礎是實數理論。實數系最重要的特徵是連續性,有了實數的連續性,才能討論極限,連續,微分和積分。正是在討論函數的各種極限運算的合法性的過程中,人們逐漸建立起了嚴密的數學分析理論體系。在學習這門課程時,既需要感覺和直覺去分析理解問題,又需要嚴密的證明來說明你的觀點。剛接觸時,由於和高中的思維方式有很大不同,可能會有無從下手的感覺,但多看例題,反復練習,慢慢就會熟悉理解。
高等代數主要研究線性空間、線性變換和多項式理論等。通過引入向量、矩陣、行列式等工具,在一般的集合上研究問題,並將抽象的線性變換視為成更實際的矩陣進行研究。這是一套嚴密完整的理論,全部學完後,你將看到它完整的面目。在學習時,要注意將知識融會貫通,形成一個整體,一套體系。
解析幾何在大一學的不多也不難,多用線性代數方法研究。
數分和高代是數學專業中的基礎,需要高度重視,學到高年級的課程時,會發現有一些內容和數分高代的內容相近或是類似,如果一開始沒好好學,後面會越學越辛苦。
學習數學必須要多思考,要多想想一個定理是怎麼引入的,為什麼需要這些條件,缺了某一個條件會有什麼後果,多記一些例子,尤其是反例,再想想看如果不看證明,自己能不能證明出來。多研究例題,看看人家是怎麼想的,思考為什麼別人能想到,有什麼地方可以找到突破口,要積累。多做題,多做好題,注意老師課堂上講的題目和勾出來的題目。
在大學期間,也會有數學競賽,主要的有:全國大學生數學建模競賽(國賽)、美國大學生數學建模競賽(美賽)、全國大學生數學競賽(數學競賽)、丘成桐大學生數學競賽(丘賽)。對自己的數學實力有自信的,或是想要挑戰一下自己的同學可以考慮參加這幾個競賽,檢驗一下自己。
要學好數學需要多讀書,要擴大自己在數學領域的知識面,才會有更加深入的體會和了解。故在此推介一些適合數學專業的同學看的書,希望對大家有所幫助。
數學分析
1. 基礎教材
(1)數學分析 陳紀修 復旦大學出版社
(2)數學分析 華東師范大學出版社(沒有復旦的版本好,當作基礎中的基礎,全部掌握文本內容和習題即可)
(3)數學分析教程 常庚哲(較難)
2. 參考書
(1)微積分學教程 菲赫金哥爾茨(非常詳細,可作數學分析「詞典」用,若要順序讀下來可能比較耗時)
(2)數學分析 卓里奇(觀點比較高級,建議高年級時或覺得自己學得很清晰的同學閱讀)
(3)數學分析講義 陳天權 (視角非常高,建議較高年級時閱讀)
(4)數學分析原理(Principles of Mathematical Analysis) Rudin (比較全面的經典教材,寫得比較簡練,可以學完後看)
(5)陶哲軒實分析 陶哲軒 (從最基礎寫起,可以當作課外讀物)
(6)重溫微積分 齊民友 (可以學得差不多時作為回顧)
(7)數學分析新講 張築生
(8)數學分析全程輔導及習題精解
3. 習題
(1)數學分析習題課講義(上下冊) 謝惠民等 (很好的習題集)
(2)數學分析中的典型問題與方法 裴禮文 (很好的習題集,慢慢做不必著急)
(3)吉米多維奇數學分析習題集(1—6)(題目以計算為主,可以選取裡面的計算題作為對自己計算能力的檢驗,不要刷題,挑取類型題做熟練就行)
高等代數
1. 參考書
(1)高等代數學習指導書(上下冊) 丘維聲 (非常厚的兩本書,也非常詳細清晰,可作參考)
(2)高等代數簡明教程(上下冊) 藍以中 (比較薄,易攜帶)
(3)高等代數學 張賢科、許甫華 (相比以上較難,但非常全面,有一些知識在高等代數課上並未涉及,可以到這里閱讀)
(4)高等代數解題方法 張賢科、許甫華(上本書的配套習題書)
2. 習題集
(1)高等代數習題集(上下冊) 楊子胥(比較全面的一本高等代數習題集,可以作參考)
(2)高等代數習題精解 劉丁酉 中國科學技術大學出版社 (較全面)
(3)我院樊啟斌老師整理的高等代數習題集非常好,除了該本練習和課後習題,一般不需要再多做題目。
概率論
(1)概率論 何書元 北京大學出版社(輕便而易懂)
(2)概率論教程 鍾開萊(均以實變函數知識為基礎的概率論,是真正意義上的數學中的概率論,大三的數基與弘毅同學可看)
(3)概率論教程 繆柏其、 胡太忠 中國科學技術大學出版社
數值分析
(1)數值線性代數 北京大學出版社
(2)數值計算方法 武漢大學出版社
常微分方程
(1)常微分方程教程 丁同仁(國內經典教材)
(2)常微分方程習題集 庄萬(習題比較多可以參考一下)
(3)高等數學例題與習題集(四)常微分方程 博亞爾丘克(還不錯的一本ODE習題集)
(4)常微分方程 阿諾爾德(觀點較高的一個經典著作)
復變函數
(1)復變函數簡明教程 譚小江,伍勝健(北大教材,條理清晰,可作初次學慣用)
(2) Complex Analysis, Stein (非常簡練而全面,可作參考書)
(3)實分析與復分析(Real and Complex Analysis), Rudin (經典的西方教材)
(4)復分析(Complex Analysis), Ahlfors(最經典的西方教材之一)
(5)高等數學例題與習題集(三) 復變函數 博亞爾丘克(非常全面的一本復變函數習題集)
實變函數
(1)Real Analysis, Folland(深入淺出,很詳細)
(2)Real Analysis, Stein(比較經典的教材)
(3)實分析與復分析(Real and Complex Analysis), Rudin(經典教材,比較概括而全面)
(4)實變函數論,實變函數學習指南 周民強(非常好的國內教材,裡面思考題非常多,可以慢慢閱讀思考)
泛函分析
(1)泛函分析,江澤堅(非常簡明)
(2)泛函分析講義(上下冊) 張恭慶、林源渠、郭懋正(北大教材,比較全面,習題也不錯)
(3)Functional Analysis, Rudin(經典教材)
(4)泛函分析(Functional Analysis), Peter Lax(經典教材)
B. 怎麼提高大學數學成績
身為文科生的我對於數學有著千絲萬縷的感觸,數學是一直讓我頭疼的學科。上到了大學所選的專業也是要學習數學,依然擺脫不了被數學支配的恐懼。那怎麼辦?那隻能 「投機取巧」了,適用了很多的數學方法,我依然覺得掌握對的方法是非常有必要也是非常重要的。從班上的數學學霸身上我薅到了學霸的數學學習方法,哈哈哈,用了學霸的方法之後成績真的有顯而易見的提升!so,我想把這個實用的方法分享給大家,希望對想學好數學的小夥伴們有幫助噢~
第一、就是要做錯題本!
學生黨一定要有錯題本!
不要覺得上到大學就什麼筆記本錯題本都不需要了,其實不然,學習工具用的好關鍵時刻助你跑。學霸每學期都會整理出很多很多的數學錯題,大考前都會翻翻看一看的。這個習慣真的受益終身,對於學數學。錯題本里不止有錯題,還可以包括老師上課講的做題方法,自己做題摸索出來的規律,模型等等,考前翻一翻對自己幫助非常大。(可以買分頁的活頁本,把幾個板塊分隔開,便於找到你想看的東西)
翻一翻對自己幫助非常大。(可以買分頁的活頁本,把幾個板塊分隔開,便於找到你想看的東西)
C. 在大學怎樣才能學好數學專業
我是數學專業本科畢業,我大一的時候也曾經和你一樣困惑,怎麼我高中是數學尖子,大學卻成差生。後來不知道怎麼突然間開竅了,其實大學數學分成很多科。基本上數學專業和非數學專業學的數學最大不同就是專業學的大多是怎麼「證明」,後者主要學怎麼計算。
我的建議:1、先把書里的例題看懂,有時要一個晚上的時間才能真正看懂一道例題,不懂的求教,接著把證明過程遮住,自己去證明。然後再跟書里的證明過程比對。最後把課後類似的題目自己做一遍,再找同學老師找答案比對。
因為很多時候你看過例題一眼就覺得懂了,實際上自己做不出來。
2、分析題型,把所學的每個科目都統計一下有多少種研究的題型。一般掌握了題型,你就可以不變應萬變。
D. 大學數學太難學了 怎麼辦啊
怎樣才能學好數學?
要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。
一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。
很多人在考試時總考不出自己的實際水平,拿不到理想的分數,究其原因,就是心理素質不過硬,考試時過於緊張的緣故,還有就是把考試的分數看得太重,所以才會導致考試失利,你要學會換一種方式來考慮問題,你要學會調整自己的心態,人們常說,考試考得三分是水平,七分是心理,過於地追求往往就會失去,就是這個緣故;不要把分數看得太重,即把考試當成一般的作業,理清自己的思路,認真對付每一道題,你就一定會考出好成績的;你要學會超越自我,這句話的意思就是,心裡不要總想著分數、總想著名次;只要我這次考試的成績比我上一次考試的成績有所提高,哪怕是只高一分,那我也是超越了自我;這也就是說,不與別人比成績,就與自己比,這樣你的心態就會平和許多,就會感到沒有那麼大的壓力,學習與考試時就會感到輕松自如的;你試著按照這種方式來調整自己,你就會發現,在不經意中,你的成績就會提高許多;
這就是我的經驗之談,媽媽教給我的道理,使我順利地度過了中學階段,也使我的成績從高一班上的30多名到高三時就進入了年級的前10名,並且沒有感到絲毫的壓力,學得很輕松自如,你不妨也試一試,但願我的經驗能使你的壓力有所減輕、成績有所提高,那我也就感到欣慰了;
最祝你學習進步!
E. 怎麼學好大學數學
數學是一門非常難的學科,如果不會學習數學,你的成績就很難提高。大學數學作為必修的一門課程,雖然它與高中數學相比有一定的難度但是這也是大學數學所不能比的。但是如果你想學好數學的話,你必須要好好利用每一次可以提升自己數學能力的機會。下面我們一起來看一下都有哪些好方法吧!
如果你真的很喜歡數學,那麼你可以參加一些校內的活動和校外活動。校內活動包括演講比賽,講課比賽等。校外活動則包括學生辯論賽,班級籃球賽等。如果你在大學里獲得了一些獎項或者是其他的一些榮譽稱號,那麼你就可以報名參加校外活動。這些活動都是可以讓你在大學里獲得提升的。
F. 大學數學大題的最佳解題技巧
大題是大學數學科目的重要組成部分,也是比分佔得很重的一部分,考生需要掌握解題技巧,才能正確答題,下面我給大家帶來大學數學大題的最佳解題技巧,希望對你有幫助。
大學數學大題的最佳解題技巧
一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。
二、數列題
1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、立體幾何題
1、證明線面位置關系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。
四、概率問題
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2、搞清是什麼概率模型,套用哪個公式;
3、記准均值、方差、標准差公式;
4、求概率時,正難則反(根據p1+p2+...+pn=1);
5、注意計數時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意「零散的」的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;
2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變數的取值范圍等等;
3、戰術上整體思路要保7分,爭9分,想12分。
六、導數、極值、最值、不等式恆成立(或逆用求參)問題
1、先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用「和」或「,」隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);
2、注意最後一問有應用前面結論的意識;
3、注意分論討論的思想;
4、不等式問題有構造函數的意識;
5、恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);
6、整體思路上保6分,爭10分,想14分。
大學數學解題思路
1、函數與方程思想
函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程或不等式模型去解決問題。同學們在解題時可利用轉化思想進行函數與方程間的相互轉化。
2、 數形結合思想
中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的「法寶」,又是優化解題途徑的「良方」,因此建議同學們在解答數學題時,能畫圖的盡量畫出圖形,以利於正確地理解題意、快速地解決問題。
3、特殊與一般的思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
4、極限思想解題步驟
極限思想解決問題的一般步驟為:一、對於所求的未知量,先設法構思一個與它有關的變數;二、確認這變數通過無限過程的結果就是所求的未知量;三、構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。
大學數學學習方法
1.學習的.心態。
多數中等生的數學成績是很有希望提升。一方面是目前具備了一定基礎,加上努力認真,這種學生態度沒有問題,只是缺少方向和適合的方法而已。另一方面,備考時間還算充足,還有時間進行調整和優化。所以平日里多給自己一些積極的心裡暗示,堅持不斷地實踐合適自己的學習方法。
2.備考的方向。
什麼是備考方向?所謂備考方向就是考試方向。在平時做題的時候,要弄明白,你面前的題是哪個知識框架下,那種類型的題型,做這樣類型的題有什麼樣的方法,這一類的題型有哪些?等等。
題型和知識點都是有限的,只要我們根據常考的題型,尋找解題思路並合理的訓練,那麼很容易提升自己的數學成績。
3.訓練的方式。
每個人實際的情況不一樣,訓練的方式也不不同,考試中取得的好成績都是考前合理訓練的結果。很多學生抱怨時間不足,每天做完作業以後,身心疲憊。面對一堆題目,特別是數學題,可以注重以下幾個角度:
(1)弄清楚自己的需要。例如拿到老師布置的作業,無論是試卷還是課本習題,如果帶著情緒做,那麼效果肯定不好。首先要弄清自己的需要,比如這些題目中哪些題目質量好?哪些是你還沒有弄懂的?哪些是以前常出現的?哪些是你肯定會做的等等,你最想解決哪題?
(2)制定目標。如果應付老師來做題無疑導致做題質量不高,那麼在做題之前應該制定一定目標,如上面說的那樣,你通過哪些題目來訓練正確率?通過哪些題目來練習速度?通過哪些題目來完善步驟等等。有了目標,更好的實現目標,在這個過程中,你肯定有很多收獲
G. 怎樣學好大學數學,可以考試拿高分
要注意高等數學課程的內容與中學數學的區別與聯系,盡快適應高等數學課程的新的教學特點。
嚴格按照任課老師的要求去做。堅持做到,課前預習,課上聽講,課後復習,認真完成作業,課後對所學的知識進行歸納總結,加深對所學內容的理解,就不難學好高等數學這門課。
有些同學就是掉以輕心,一看高等數學一開始的內容和高中所學內容極其相似就認為自己看看就會了,課也不聽,作業也不寫,結果導致後面的章節聽不懂,跟不上,學期末成績不理想,甚至不及格。
掌握正確的學習方法 ,比如函數的連續與間斷,積分的換元法、分步積分法等一時很難掌握,這就需要反復琢磨,反復思考,反復訓練。通過正反例子比較,從中體會,才能從不懂到一知半解再到基本以及熟練掌握。
建議可以看看宋浩老師以及徐小湛老師的課。准備考研以及拔高的話聽聽張宇的課也不錯,李林的題可以多寫寫。
至於蜂考那些所謂不掛科的網課當作預習或者學渣考前沖刺是可以的,平時拔高還是算了。
H. 大學數學學不會怎麼辦
認真聽課是第一步,因為在課堂上有老師為我們整理思路,並且串講知識點,同時在課堂上,如果我們遇到問題可以及時提問,困惑的地方得到立即解答,所以認真聽課是最高效的學習方法。課堂也擁有著十分利於學習利於思考的氛圍。
其次就是做好筆記,無論是自己學習還是在課堂上跟著老師學習,做筆記都能幫助我們加深記憶,整理思路,數學是一個十分考驗邏輯思維能力的學科,所以理清思路十分重要,把課本內容整理成筆記其實是一個把外在灌輸的知識內化成自己的思想的過程。
首先 與高中數學不同的是,高等數學各種各樣的定義證明超級多,課堂上老師講課速度也超級快。兩節課,100分鍾,基本上都是老師在講,而你只能在底下聽。因為課時少,加上內容又那麼多,老師不得不飛快的講,所以只要你一旦開小差,就基本沒有繼續聽下去的信心和能力了。
加之,課堂上老師基本不會給你時間消化和練習,而課後自己會不會練習也還得另說。本要在知識內容方面上了一個檔次,又不能多加練習,高數也就自然而然成了眾多大學生的噩夢。
I. 大學數學思維方法有哪些
思維的概括性表現在它對一類事物非本質屬性的摒棄和對其共同本質特徵的反映。那麼關於大學數學思維 方法 有哪些呢?下面就是我給大家帶來的大學數學思維方法,希望大家喜歡!
大學數學思維方法
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
9、數形結合思想方法
數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。
10、統計思想方法
小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
11、極限思想方法
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
12、代換思想方法
它是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
13、可逆思想方法
它是 邏輯思維 中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法
把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。化歸的方向應該是化隱為顯、化繁為簡、化難為易、化未知為已知。
15、變中抓不變的思想方法
在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
16、數學模型思想方法
所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
17、整體思想方法
對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
初中數學學什麼?
主要考查具體的「數」與「形」,以及抽象的「函數」
「數」——實數、代數式、代數方程
「形」——角與線、三角形、四邊形、多邊形、圓
「函數」——正反比例函數、一次函數、二次函數
這三者之間,知識相連,數形互通
環環相扣,無懈可擊
大學數學思維方法有哪些相關 文章 :
★ 怎麼學好大學數學有哪些學習方法
★ 大學數學怎麼學?學好大學數學的8個方法
★ 數學八種思維方法介紹
★ 數學思維訓練方法介紹
★ 有效的數學教學方法有哪些
★ 常用的數學教學方法有哪些
★ 大學數學學習獨特的方法
★ 大學數學學習方法指導
★ 如何培養數學思維方式
J. 大學數學一竅不通,怎麼辦
那是因為你對大學數學了解太少,居然這么形容數學。有這么一句話,「在一棵高高的樹上,掛了很多人,樹下更是掛了不少」,所形容的就是高等數學。
大學數學有很多科目,一般人學的是高等數學(計算方向),也有人學數學分析(理論方向),有人學線性代數,也有人學的是高等代數,還有離散數學,常微分方程,復變函數,實變函數,模糊數學,泛函分析等等。不知道你學的是哪門數學。
推薦你吉米多維奇,全都做會你就成神,做完你就成大神。大學是一個團隊游戲,你不能單單靠自己了,多跟別人交流交流,而且要死皮賴臉,別問別人,別人說他也不會你就真信,你要會說鬧搏「你就講講你理解的部分就好了」。送你一個字「勤」,不建議你死做題,建議你勤做題,勤交流(特別是與教授)液拆祥,勤吃飯。最後一點不是拼湊,不要讓細小的事情影響自己一天,大學的食堂御猛你要懂。