Ⅰ d是什麼意思數學
數學d是微分的意思,由函數B=f(A),得到A、B兩個數集,在A中當dx靠近自己時,函數在dx處的極限叫作函數在dx處的微分,微分的中心思想是無窮分割。微分是函數改變數的線性主要部分。微積分的基本概念之一。
微分概念是在解決直與曲的矛盾中產生的,在微小局部可以用直線去近似替代曲線,它的直接應用就是函數的線性化。微分具有雙重意義:它表示一個微小的量,因此就可以把線性函數的數值計算結果作為本來函數的數值近似值,這就是運用微分方法進行近似計算的基本思想
Ⅱ d是什麼意思數學單位
d代表的單位是直徑,在學習數學時,為了方便書寫和計數,會用一些字母來簡寫,如「米」(符號「m」)、「毫米」(符號「mm」)、「千克」(符號「kg」)。直徑,通過一平面圖形或立體(如圓、圓錐截面、球、立方體)中心到邊上兩點間的距離,稱為直徑。直徑所在的直線是圓的對稱軸。
直徑的兩個端點在圓上,圓心是直徑的中點。直徑將圓分為面積相等的兩部分,中間的線段就叫直徑(每一個部分成為一個半圓)。連接圓周上兩點並通過圓心的線段稱圓直徑,連接球面上兩點並通過球心的線段稱球直徑。
直徑的性質:
1、在同一個圓中直徑的長度是半徑的2倍,可以表示d=2r或r=d/2。
2、在同一個圓中直徑是最長的弦。證明:設AB是⊙O的直徑,CD是非直徑的任意一條弦,則可證明AB,CD恆成立。
Ⅲ 數學中d表示什麼意思
高等數學中d是微分,可以對任一變數微分,比如dy=y'dx,d/dx是對微分的商,可以叫對x的導數或者微商,先d才有d/dx。
一階導數的導數稱為二階導數,二階以上的導數可由歸納法逐階定義。二階和二階以上的導數統稱為高階導數。從概念上講,高階導數可由一階導數的運算規則逐階計算,但從實際運算考慮這種做法是行不通的。
(3)數學倒寫的d是什麼擴展閱讀:
對任意n階導數的計算,由於 n 不是確定值,自然不可能通過逐階求導的方法計算。此外,對於固定階導數的計算,當其階數較高時也不可能逐階計算。
所謂n階導數的計算實際就是要設法求出以n為參數的導函數表達式。求n階導數的參數表達式並沒有一般的方法,最常用的方法是,先按導數計演算法求出若干階導數,再設法找出其間的規律性,並導出n的參數關系式。
Ⅳ d在數學中表示什麼
在幾何中表示圓的直徑,也可以表示未知數或參數。還可以表示對一個函數進行微分。(dy=f'(x)dx)
Ⅳ 數學導數中d的含義是什麼(dy/dx )
解答:
搞清兩個概念就能理解d的含義了。
1、增量的概念:
Δx = x2 - x1,Δy = y2 - y1
這里的Δ就是增量的意思,只要是後面的量減前面的量,無論正負都叫增量。
2、無限小的概念:
當一個變數x,越來越趨向於一個數值a時,這個趨向的過程無止境的進行,
x與a的差值無限趨向於0,我們就說a是x的極限。
這個差值,我們稱它為「無窮小」,它是一個越來越小的過程,一個無限趨
向於0的過程,它不是一個很小的數,而是一個趨向於0的過程。
3、Δ一方面表示增量的概念,如果x1與x2差距很小,這個小是有限的小。只要
寫得出來,無論多少位小數點,只要你寫得出,只要你的筆一停,都是有限的小。
當x1與x2的差距在無止境的減小,無止境的靠近,在靠近的過程中,x1與x2
的差距無止境的趨近於0。這時我們寫成dx,也就是說,Δx是有限小的量,
dx是無限小的量。
4、d的來源,本來是 difference = 差距。當此差距無止境的趨向於0時,演變
為 differentiation, 就變成了無限小的意思,稱為「微分」。
「微分」是一個過程,是無止境的「分割」,無止境的「區分」的過程。
5、Δy/Δx 表示的一條割線的斜率,也可以表示一條切線的斜率;
dy/dx 表示的是當Δx趨近於0時的Δy/Δx,記為dy/dx,是曲線上任意一點的切線
的斜率。
這方面的細細斟酌是非常值得的,要全部寫出,就是一本《數學分析》,也就是一本厚厚的《微積分》了。樓主若想仔細研究,有任何問題,請Hi我,我為你詳細解釋。
Ⅵ d在數學里代表什麼
1、d的意思為「圓的直徑」,R為圓的半徑.
2、dm表示分米,cm表示厘米
Ⅶ d是代表什麼的呢
d代表一個運算符號,類似極限lim,積分符號。
同時也體現一個方向關系,d前與d後的關系。從d後移到d前,就是微分,反過來從d前移到d後就是積分。這個位置關系就可以反映出積分微分互為逆運算。
積分符號為,是數學中用來表示積分的符號。此符號由德國數學家戈特弗里德·萊布尼茨(Gottfried Wilhelm von Leibniz)於17世紀末開始使用。此符號的形狀基於ſ(長s)字元,相關的符號還包括∬(二重積分)、∭(三重積分)、∮(曲線積分)、∯(面積分),以及∰(體積分)。
積分符號在不同語言中的排版方式:
在不同的語言中,積分符號的形狀會有細微的差別。
1、在英文數學文獻、教科書中,積分符號向右傾斜。
2、在德文數學文獻中,積分符號保持豎直。
3、在俄文數學文獻中,積分符號向左傾斜。
Ⅷ d是什麼數學符號
高等數學中d是微分。
可以對任一變數微分,比如dy=y'dx,d/dx是對微分的商,可以叫對x的導數或者微商,先d才有d/dx。
一階導數的導數稱為二階導數,二階以上的導數可由歸納法逐階定義。二階和二階以上的導數統稱為高階導數。從概念上講,高階導數可由一階導數的運算規則逐階計算,但從實際運算考慮這種做法是行不通的。
微分歷史:
早在希臘時期,人類已經開始討論「無窮」、「極限」以及「無窮分割」等概念。這些都是微積分的中心思想;雖然這些討論從現代的觀點看有很多漏洞,有時現代人甚至覺得這些討論的論證和結論都很荒謬,但無可否認,這些討論是人類發展微積分的第一步 。
例如公元前五世紀,希臘的德謨克利特(Democritus)提出原子論:他認為宇宙萬物是由極細的原子構成。在中國,《莊子.天下篇》中所言的「一尺之捶,日取其半,萬世不竭」,亦指零是無窮小量。這些都是最早期人類對無窮、極限等概念的原始的描述。
其他關於無窮、極限的論述,還包括芝諾(Zeno)幾個著名的悖論:其森吵中一個悖論說一個人永遠都追不上一隻烏龜,因為當那人追到烏龜的出發點時,烏龜已經向前爬行了一小段路,當他再追完這一小段,烏龜又已經再向前爬行了一小段路。
芝諾說這樣一追一趕的永遠重覆下去,任何人都總追不上一隻最慢的烏龜--當然,從現代的觀點看,芝諾說的實在荒謬不過;他混淆了「無限」和「無限可分」的概念。人追烏龜經過的那段路縱然無限可分,其長度卻是有限的;所以人仍然可以以有限的時間,走完這一段路。
然而這些荒謬的論述,開啟了人類對無窮、極限等概念的探討,對後世發展微積分有深遠的歷史意味。
另外值得一提的是,希臘時代的阿基米德(Archimedes)已經懂得用無窮分割猜游的方法正確地計算一些面積,這跟現代積分的觀念已經很相似。由此可見,在歷史上,積分觀念的形成比微分還要早--這跟課程上往往先討穗春銷論微分再討論積分剛剛相反。
Ⅸ 數學中d代表什麼
數學中d有很多含義,如d可以表示未知數,也可以表示圓的直徑,R為圓的半徑也有二次函數中一次項系數的含義,另外在一次函數也代表常數項。在數學導數中,D是一個算符,D=d/dx,Df=df/dx,就是求導。Ⅹ 高數中的那個「d」是什麼意思比如物理上的「d(s)/d(t)」怎麼解讀
高數中的「d」是微分的意思。
物理中的「d(s)/d(t)」:路程s對時間t的導數,也是s的微分與t的微分之商。
微分在數學中的定義:由函數B=f(A),得到A、B兩個數集,在A中當dx靠近自己時,函數在dx處的極限叫作函數在dx處的微分,微分的中心思想是無窮分割。微分是函數改變數的線性主要部分。微積分的基本概念之一。
(10)數學倒寫的d是什麼擴展閱讀:
微分應用:
1、我們知道,曲線上一點的法線和那一點的切線互相垂直,微分可以求出切線的斜率,自然也可以求出法線的斜率。
2、假設函數y=f(x)的圖象為曲線,且曲線上有一點(x1,y1),那麼根據切線斜率的求法,就可以得出該點切線的斜率m:m=dy/dx在(x1,y1)的值,所以該切線的方程式為:y-y1=m(x-x1)。由於法線與切線互相垂直,法線的斜率為-1/m且它的方程式為:y-y1=(-1/m)(x-x1)
3、增函數與減函數
微分是一個鑒別函數(在指定定義域內)為增函數或減函數的有效方法。
鑒別方法:dy/dx與0進行比較,dy/dx大於0時,說明dx增加為正值時,dy增加為正值,所以函數為增函數;dy/dx小於0時,說明dx增加為正值時,dy增加為負值,所以函數為減函數。
4、變化的速率
微分在日常生活中的應用,就是求出非線性變化中某一時間點特定指標的變化。
在t=3時,我們想知道此時水加入的速率,於是我們算出dV/dt=2/(t+1)^2,代入t=3後得出dV/dt=1/8。
所以我們可以得出在加水開始3秒時,水箱里的水的體積以每秒1/8升的速率增加。