Ⅰ 數學符號意思
∈屬於符號,表示元素與集合之間的一種從屬關系
∏求積符號
∑求和符號
∕相當於除號÷
√算術平方根,如±2的平方是4,那麼4的算術平方根是2
∝正比於,常見於物理學,如a∝b說明當a增加,b也增加
∞無窮
表示一種趨向,+∞表示不斷變大的趨勢
∟直角符號
∠角符號
∣絕對值符號與除號
‖平行
刻畫兩直線的關系
∧交符號
邏輯基本符號,表示兩個命題同時發生則命題成立
∨並符號
邏輯基本符號,表示兩個命題有一個發生則命題成立
∩交符號
集合基本符號,表示兩個集合同時滿足
∪並符號
集合基本符號,表示至少滿足一個集合
∫不定積分符號
微積分基本符號
∮積分符號
微積分基本符號
∴所以
∵因為
∶比例符號
∷比例
∽屬於符號
集合基本符號
刻畫兩個集合間的從屬關系
≈約等於符號
≌相似符號
刻畫集合圖形的基本特徵
≈約等號
刻畫兩個關系式之間的關系
≠不等號
兩者存在差異的地方
≡同餘符號
數論基本符號,表示兩個整數除以同一個特定的整數余數相等,例如5=2×2+1,7=2×3+1,那麼5≡7
(mod
2)
≤不大於
關系符號
前者小於或者等於後者
≥不小於
關系符號
前者大於或者等於後者
≤遠小於等於
關系符號
前者遠小於後者或與後者相等
≥遠大於等於
關系符號
前者遠大於後者或與後者相等
≮非小於
同≥
≯非大於
同≤
⊙圓
⊙O表示圓心為O的圓
⊥垂直
刻畫兩直線或空間間關系
⊿三角形
⌒反三角函數
sin正弦函數
Cos餘弦函數
tan正切函數
cot餘切函數
sec正割函數
csc餘割函數
log對數
ln自然對數
lg常用對數
+加法
-減法
×乘法
÷除法
Ⅱ 數學 這個符號是什麼意思怎麼讀
符號是∑,英文譯音是Sigma, 表示數學中的求和號,是數學中常用的符號,主要用於求多項數的和。「西格瑪」是希臘字母,也有念作「西瑪」「希瑪」等各種讀法。
Ⅲ 這個數學符號是什麼意思
這個符號是數學中的求和符號,其含義是一定范圍內的數字相加得出其和。
Ⅳ 什麼是數學符號
數學符號一般有以下幾種:(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏.(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等.(3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等.(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」 (5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」 (6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等.符號 意義 ∞ 無窮大 PI 圓周率 |x| 函數的絕對值 ∪ 集合並 ∩ 集合交 ≥ 大於等於 ≤ 小於等於 ≡ 恆等於或同餘 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 {x} 小數部分 x - floor(x) ∫f(x)δx 不定積分 ∫[a:b]f(x)δx a到b的定積分 P為真等於1否則等於0 ∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求極限 f(z) f關於z的m階導函數 C(n:m) 組合數,n中取m P(n:m) 排列數 m|n m整除n m⊥n m與n互質 a∈ A a屬於集合A #A 集合A中的元素個數
Ⅳ 數學符號含義
數學符號大全及意義之運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
數學符號大全及意義之關系符號
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b 表示「a能整除b」,而 ||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
數學符號大全及意義之結合符號
如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」=。
數學符號大全及意義之性質符號
如正號「+」,負號「-」,正負號「 」(以及與之對應使用的負正號「」)
數學符號大全及意義之省略符號
如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),
雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),
∵ 因為(一個腳站著的,站不住)
∴ 所以(兩個腳站著的,能站住)(口訣:因為站不住,所以兩個點;因為上面兩個點,所以下面兩個點)
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數 (n元素的總個數;r參與選擇的元素個數),冪 等。
數學符號大全及意義之排列組合符號
C 組合數
A (或P) 排列數
n 元素的總個數
r 參與選擇的元素個數
! 階乘,如5!=5×4×3×2×1=120,規定0!=1
!! 半階乘(又稱雙階乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840
數學符號大全及意義之離散數學符號
∀ 全稱量詞
∃存在量詞
├ 斷定符(公式在L中可證)
╞ 滿足符(公式在E上有效,公式在E上可滿
Ⅵ 數學符號的含義
數學符號「△」表示三角形。
在數學中,對於三角形的書寫在計算過程中比較復雜,通常使用「△」來代替「三角形」三個字,比如在描述有ABC三個點構成的三角形時,為了簡便的書寫,常使用「△ABC」來表示。
(6)數學這個符號代表什麼擴展閱讀:
數學中三角形常用的一些性質:
1 、在平面上三角形的內角和等於180°(內角和定理)。
2 、在平面上三角形的外角和等於360° (外角和定理)。
3、 在平面上三角形的外角等於與其不相鄰的兩個內角之和。
推論:三角形的一個外角大於任何一個和它不相鄰的內角。
4、 一個三角形的三個內角中最少有兩個銳角。
5、 在三角形中至少有一個角大於等於60度,也至少有一個角小於等於60度。
6 、三角形任意兩邊之和大於第三邊,任意兩邊之差小於第三邊。
Ⅶ 這個數學符號代表什麼意思
∑,Sigma,希臘字母(念:西格瑪) 表示數學中的「求和」,比如:∑Pi,i為1,2,...,T,即為求P1 + P2 + ...+ PT的和。
Ⅷ 數學符號是什麼符號
數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現代數學常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。
運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢等。
(8)數學這個符號代表什麼擴展閱讀:
數學符號的發展:
例如加號曾經有好幾種,現代數學通用「+」號。「+」號是由拉文「et」(「和」的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文「plu」(「加」的意思)的第一個字母表示加,草為「μ」最後都變成了「+」號。「-」號是從拉丁文「minus」(「減」的意思)演變來的,一開始簡寫為m,再因快速書寫而簡化為「-」了。
也有人說,賣酒的商人用「-」表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在「-」上加一豎,意思是把原線條勾銷,這樣就成了個「+」號。到了十五世紀,德國數學家魏德美正式確定:「+」用作加號,「-」用作減號。
乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。