1. 大學數學主要學的是些什麼內容
大學的數學學習內容屬於高等數學,主要的內容有:
1、極限
極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。
2、微積分
微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。
3、空間解析幾何
藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。
歷史發展
一般認為,16世紀以前發展起來的各個數學學科總的是屬於初等數學的范疇,因而,17世紀以後建立的數學學科基本上都是高等數學的內容。由此可見,高等數學的范疇無法用簡單的幾句話或列舉其所含分支學科來說明。
19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。
分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。
2. 大學數學學什麼內容
大學數學一般是高等數學,包括微積分、代數學、幾何學以及它們之間的交叉內容。高等數學的主要學習內容包括數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
數學分析課程的內容一般由極限論、一元微積分、級數論和多元微積分這四大部分所組成,其中一元微積分對應了通常國外所說的「初等微積分」課程,而極限論、級數論和多元微積分這三部分則對應了國外所說的「高等微積分」課程。極限理論的主要內容有:數列的極限、函數的極限、連續函數、關於實數的基本定理、以及閉區間上連續函數的性質。
大學數學學習技巧
第一、大學的數學非常注重邏輯,課前的預習有助於學好大學數學,一可以發現不懂的,二可以在正式課程上加深印象。
第二,重點掌握關鍵公式,大學數學不會考得太深,基本是學會了相關的內容,考試就考這么些內容,所以公式必定要爛熟於心。
第三,練習是很重要的,大學數學雖然考得不深,但是學生常有,上課聽老師說,明白。但是課後自己做題,卻發現不會。這就是沒有熟練的典型特徵
第四,考試復習的時候,一定要聽老師在考試前一節課給你們講的題,或者老師劃的重點。大學的考試,老師說什麼,考試幾乎就考什麼的。
3. 大學數學學什麼
大學數學主要有 高等數學、線性代數、概率統計、數值分析、離散數學。其中高數、線代、概統都是理工類學生必修科目。文科生只需學比較簡單的高數就行了。而考研數學也就考這三科。 高數主要有導數、微積分、空間解釋幾何、多元函數微分、重積分、常微分方程等 線性代數主要有矩陣、行列式、向量空間、解線性方程組、矩陣可對角化、實二次型等 概率統計主要有隨機事件、事件概率、條件概率、隨機變數、統計與統計學、點估計等 離散數學主要有數理邏輯、集合、二元關系、函數、代數、格與布爾代數、圖論等 數值分析主要有插值法、函數逼近、數值積分、常微分方程、方程求根、解線性方程、迭代法等 2。應該有吧。在微電子、通信、電信等專業也要學。不過這也和計算機有關。。不過現在分科也沒有絕對的。 3。編程。誤差估計。演算法分析與演算法設計。我覺得都需要用到。 4。基本上科學研究都回或多或少要應用到統計數學吧。
4. 大學的數學專業都學什麼啊
主要學習如下課程:
數學分析、高等代數、高等數學、解析幾何、微分幾何、高等幾何、常微分方程、偏返棚雹微分方程、概率論與數理統計、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。師范類還要學習數學教育學等。
數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和和慶對物體形狀及運動的觀察中產生。
概率和統計:
作為數學的分支,概率學是研究隨機事件的一門科學技術,涉及工程、生物學、化學、遺傳學、博弈論、經濟學等多方面的漏帆應用,幾乎遍及所有的科學技術領域,可以說是各種預測的基石。
概率論與數理統計是本世紀迅速發展的學科,研究各種隨機現象的本質與內在規律性以及自然科學、社會科學等各個學科中各種類型數據的科學的綜合處理及統計推斷方法。
5. 大學里的高等數學主要學啥
高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。
指相對於初等數學而言,數學的對象及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
(5)大學數學都是什麼擴展閱讀:
高等數學課程分為兩個學期進行學的管理層次一般都呈金字塔形式,從塔底到塔頂,由寬到窄。管理的幅度則是越往上層,管理難度越大,管理幅度越往下層,管理的幅度越小。國內比較常見的是直線職能制管理,在該管理體制中,任何一級領導、管理人員、服務員都要明確自己的業務范圍、工作職責及本人應該具有的工作技能和知識。。它的教學內容包含了一元函數微積分、多元函數微積分、空間解析幾何與向量代數初步、微分方程初步、場論初步等。
在學習這些高等數學的內容的時候,很多的同學表示犯難,的確,因為這些都是在高中課程的基礎上完善的,想要更好的學好高等數學這門學科,在高中時候的積累顯得特別的重要。
6. 大學數學學什麼
分析學、代數學、幾何學及其應用的基本理論和基本方法以及一些常用的計算機知識和數學軟體的使用。
數學專業研究方向有分析,代數,幾何,方程,拓撲,數論,概率論與數理統計等。
在國家重視基礎科學發展以及重點建設一流專業之際,數學專業作為第一批國家級一流專業建設點迎來了一個千載難逢的發展機遇,發展前景廣闊,發展趨勢很好。
7. 大學數學包括哪幾門
大學數學一般是高等數學,包括微積分、代數學、幾何學以及它們之間的交叉內容。高等數學的主要學習內容包括數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。
極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。極限是解決高等數學問題的基礎。
微積分是燃褲槐高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科,在許多領域都有重要的應用。
空間解析幾何是指藉助矢量的概念可使幾何更便於應用到某些自然科學與技術領域中去,因純絕此,空間解析幾何介紹空間坐標系後,緊接著介紹矢量的概念及其代數運算。
微分方程指含有未知函數及其導數的關系式。解微分方程就是找出未知函數。通過對微分方程的求解,可以解決許多物理學問題。
級數是指將數列的項依次用加號連接皮友起來的函數。典型的級數有正項級數、交錯級數、冪級數、傅里葉級數等。
8. 大學本科數學專業的,都要學哪些科目
專業基礎課有數學分析、高等代數、解析幾何、概率論與數理統計:這三者是老三門,將來如果考研時要用到的。
近代數學的新三門是:拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數)。
另外其他的一些常見的分支包括復變函數、常微分、運籌、最優化,數學模型。
9. 大學數學系都學什麼
數學系的主要課程有:數學分析、高等代數、解析幾何、普通物理、概率論、數學建模、近世代數、高等幾何、微分幾何、常微分方程、復變函數、實變函數、初等數學研究、數學實驗等。
一、應用數學的概念:
應用數學是應用性較強的諸數學學科或分支的統稱。
泛指一切數學理論和方法中應用性較強的部分。
二、培養方向:
該專業培養掌握數學科學的基本理論與基本方法,具備運用數學知識、使用計算機解決實際問題的能力,受到科學研究的初步訓練,能在科技、教育和經濟部門從事研究、教學工作或在生產經營及管理部門從事實際應用、開發研究和管理工作的高級專門人才。
三、專業介紹:
該專業旨在培養數學與應用數學的高素質拔尖人才,培養現代數學頂峰的攀登者,培養在我國現代化建設中擔當大任的數學和應用數學領軍人物。
在課程設置上,尤其在一、二年級,強調正規扎實的數學基礎訓練,為學生將來成才和多方向的發展奠定堅實寬廣的根基。
同時引導學生深入到數學最重要的分支,接觸現代數學思想和框架,拓寬知識領域,激發求知和探索興趣。
在積極向上,寬松自由的環境中,培養學生高度的創新意識和能力,達到專與博、嚴與活的高度和諧統一。
該專業含數學、應用數學、概率統計三個方向,學生可以選修不同側重的課程。
除開設國內一流的標準的數學課程之外,還根據師資優勢和數學發展,在現代數論、代數、幾何、分析、微分方程、概率統計及計算機科學等方面,開設了有特色的系列課程。
10. 大學裡面高等數學都學的什麼啊
在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱「高等數學」;文史科各類專業的學生,學的數學稍微淺一些,課本常稱「微積分」。
理工科的不同專業,文史科的不同專業,深淺程度又各不相同。研究變數的是高等數學,可高等數學並不只研究變數。至於與「高等數學」相伴的課程通常有:線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
微積分的基本概念和內容包括微分學和積分學。
微分學的主要內容包括:極限理論、導數、微分等。
積分學的主要內容包括:定積分、不定積分等。
從廣義上說,數學分析包括微積分、函數論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。
數理統計是伴隨著概率論的發展而發展起來的一個數學分支,研究如何有效的收集、整理和分析受隨機因素影響的數據,並對所考慮的問題作出推斷或預測,為採取某種決策和行動提供依據或建議。
概率論是研究隨機現象數量規律的數學分支。隨機現象是相對於決定性現象而言的。在一定條件下必然發生某一結果的現象稱為決定性現象。
例如在標准大氣壓下,純水加熱到100℃時水必然會沸騰等。隨機現象則是指在基本條件不變的情況下,每一次試驗或觀察前,不能肯定會出現哪種結果,呈現出偶然性。例如,擲一硬幣,可能出現正面或反面。
隨機現象的實現和對它的觀察稱為隨機試驗。隨機試驗的每一可能結果稱為一個基本事件,一個或一組基本事件統稱隨機事件,或簡稱事件。典型的隨機試驗有擲骰子、扔硬幣、抽撲克牌以及輪盤游戲等。
線性代數是數學的一個分支,它的研究對象是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的一個重要課題。
因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
(10)大學數學都是什麼擴展閱讀:
19世紀以前確立的幾何、代數、分析三大數學分支中,前兩個都原是初等數學的分支,其後又發展了屬於高等數學的部分,而只有分析從一開始就屬於高等數學。分析的基礎——微積分被認為是「變數的數學」的開始,因此,研究變數是高等數學的特徵之一。
原始的變數概念是物質世界變化的諸量的直接抽象,現代數學中變數的概念包含了更高層次的抽象。如數學分析中研究的限於實變數,而其他數學分支所研究的還有取復數值的復變數和向量、張量形式的。
以及各種幾何量、代數量,還有取值具有偶然性的隨機變數、模糊變數和變化的(概率)空間——范疇和隨機過程。描述變數間依賴關系的概念由函數發展到泛函、變換以至於函子。
與初等數學一樣,高等數學也研究空間形式,只不過它具有更高層次的抽象性,並反映變化的特徵,或者說是在變化中研究它。例如,曲線、曲面的概念已發展成一般的流形。
按照埃爾朗根綱領,幾何是關於圖形在某種變換群下不變性質的理論,這也就是說,幾何是將各種空間形式置於變換之下來來研究的。
無窮進入數學,這是高等數學的又一特徵。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。數學中的無窮以潛無窮和實無窮兩種形式出現。
在極限過程中,變數的變化是無止境的,屬於潛無窮的形式。而極限值的存在又反映了實無窮過程。最基本的極限過程是數列和函數的極限。數學分析以它為基礎,建立了刻畫函數局部和總體特徵的各種概念和有關理論,初步成功地描述了現實世界中的非均勻變化和運動。
另外一些形式上更為抽象的極限過程,在別的數學學科中也都起著基本的作用。還有許多學科的研究對象本身就是無窮多的個體,也就說是無窮集合,例如群、環、域之類及各種抽象空間。這是數學中的實無窮。能夠處理這類無窮集合,是數學水平與能力提高的表現。
為了處理這類無窮集合,數學中引進了各種結構,如代數結構、序結構和拓撲結構。另外還有一種度量結構,如抽象空間中的范數、距離和測度等,它使得個體之間的關系定量化、數字化,成為數學的定性描述和定量計算兩方面的橋梁。上述結構使得這些無窮集合具有豐富的內涵,能夠彼此區分,並由此形成了眾多的數學學科。
數學的計算性方面。在初等數學中甚至佔了主導的地位。它在高等數學中的地位也是明顯的,高等數學除了有很多理論性很強的學科之外,也有一大批計算性很強的學科,如微分方程、計算數學、統計學等。在高度抽象的理論裝備下,這些學科才有可能處理現代科學技術中的復雜計算問題。
參考資料:
高等數學(基礎學科名稱)_網路