導航:首頁 > 數字科學 > 數學上有哪些不存在的

數學上有哪些不存在的

發布時間:2022-03-05 16:05:30

『壹』 數學上存不存在非復數

你的問題是屬於數域問題。首先,你能大膽設疑,肯動腦子是值得贊賞。其次,就目前來說, 數域最大是復數,復數包括實數與虛數,初中學習到的數控制在實數范圍內,高中學習的數就 是復數,大學及研究生學習與利用的數也是復數。所以,現在學習與研究的數,最大范圍是復數。 以後,隨著人們研究與使用的需要,數域是否會從復數擴展為其它數,讓我們共同觀察吧。

『貳』 數學上還有哪些無法解決的難題

一 數學基礎問題。
1、 數是什麼?
2、 四則運算是什麼?
3、 加法和乘法為什麼符合交換律,結合律,分配律?
4、 幾何圖形是什麼?

二 幾個未解的題。
1、求 (1/1)^3+(1/2)^3+(1/3)^3+(1/4)^3+(1/5)^3+ … +(1/n)^3=?
更一般地:
當k為奇數時 求
(1/1)^k+(1/2)^k+(1/3)^k+(1/4)^k+(1/5)^k+ … +(1/n)^k=?
背景:
歐拉求出:
(1/1)^2+(1/2)^2+(1/3)^2+(1/4)^2+(1/5)^2+ … +(1/n)^2=(π^2)/6

並且當k為偶數時的表達式。
2、e+π的超越性
背景
此題為希爾伯特第7問題中的一個特例。
已經證明了e^π的超越性,卻至今未有人證明e+π的超越性。

3、素數問題。
證明:
ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s + …

(s屬於復數域)
所定義的函數ζ(s)的零點,除負整實數外,全都具有實部1/2。

背景:
此即黎曼猜想。也就是希爾伯特第8問題。
美國數學家用計算機算了ζ(s)函數前300萬個零點確實符合猜想。
希爾伯特認為黎曼猜想的解決能夠使我們嚴格地去解決歌德巴赫猜想(任一偶數可以分解為兩素數之和)和孿生素數猜想(存在無窮多相差為2的素數)。

引申的問題是:素數的表達公式?素數的本質是什麼?

4、 存在奇完全數嗎?

背景:
所謂完全數,就是等於其因子的和的數。
前三個完全數是:
6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124+248
目前已知的32個完全數全部是偶數。
1973年得到的結論是如果n為奇完全數,則:
n>10^50

5、 除了8=2^3,9=3^2外,再沒有兩個連續的整數可表為其他正整數的方冪了嗎?

背景:
這是卡塔蘭猜想(1842)。
1962年我國數學家柯召獨立證明了不存在連續三個整數可表為其它正整數的方冪。
1976年,荷蘭數學家證明了大於某個數的任何兩個正整數冪都不連續。因此只要檢查小於這個數的任意正整數冪是否有連續的就行了。
但是,由於這個數太大,有500多位,已超出計算機的計算范圍。
所以,這個猜想幾乎是正確的,但是至今無人能夠證實。

6、 任給一個正整數n,如果n為偶數,就將它變為n/2,如果除後變為奇數,則將它乘3加1(即3n+1)。不斷重復這樣的運算,經過有限步後,一定可以得到1嗎?

背景:
這角古猜想(1930)。
人們通過大量的驗算,從來沒有發現反例,但沒有人能證明。

三 希爾伯特23問題里尚未解決的問題。
1、問題1連續統假設。
全體正整數(被稱為可數集)的基數 和實數集合(被稱為連續統)的基數c之間沒有其它基數。
背景:1938年奧地利數學家哥德爾證明此假設在集合論公理系統,即策莫羅-佛朗克爾公理系統里,不可證偽。
1963年美國數學家柯恩證明在該公理系統,不能證明此假設是對的。
所以,至今未有人知道,此假設到底是對還是錯。
2、問題2 算術公理相容性。
背景:哥德爾證明了算術系統的不完備,使希爾伯特的用元數學證明算術公理系統的無矛盾性的想法破滅。
3、 問題7 某些數的無理性和超越性。
見上面 二 的 2
5、 問題 8 素數問題。
見上面 二 的 3
6、 問題 11 系數為任意代數數的二次型。
背景:德國和法國數學家在60年代曾取得重大進展。
7、 問題 12 阿貝爾域上的克羅內克定理在任意代數有理域上的推廣。
背景:此問題只有些零散的結果,離徹底解決還十分遙遠。
8、 問題13 僅用二元函數解一般7次代數方程的不可能性。
背景:1957蘇聯數學家解決了連續函數情形。如要求是解析函數則此問題尚未完全解決。
9、 問題15 舒伯特計數演算的嚴格基礎。
背景: 代數簌交點的個數問題。和代數幾何學有關。
10、 問題 16 代數曲線和曲面的拓撲。
要求代數曲線含有閉的分枝曲線的最大數目。和微分方程的極限環的最多個數和相對位置。
11、 問題 18 用全等多面體來構造空間。
無限個相等的給定形式的多面體最緊密的排列問題,現在仍未解決。
12、 問題 20 一般邊值問題。
偏微分方程的邊值問題,正在蓬勃發展。
13、 問題 23 變分法的進一步發展。

四 千禧七大難題
2000年美國克雷數學促進研究所提出。為了紀念百年前希爾伯特提出的23問題。每一道題的賞金均為百萬美金。

1、 黎曼猜想。
見 二 的 3
透過此猜想,數學家認為可以解決素數分布之謎。
這個問題是希爾伯特23個問題中還沒有解決的問題。透過研究黎曼猜想數
學家們認為除了能解開質數分布之謎外,對於解析數論、函數理論、
橢圓函數論、群論、質數檢驗等都將會有實質的影響。

2、楊-密爾斯理論與質量漏洞猜想(Yang-Mills Theory and Mass Gap
Hypothesis)
西元1954 年楊振寧與密爾斯提出楊-密爾斯規范理論,楊振寧由
數學開始,提出一個具有規范性的理論架構,後來逐漸發展成為量子
物理之重要理論,也使得他成為近代物理奠基的重要人物。

楊振寧與密爾斯提出的理論中會產生傳送作用力的粒子,而他們
碰到的困難是這個粒子的質量的問題。他們從數學上所推導的結果
是,這個粒子具有電荷但沒有質量。然而,困難的是如果這一有電荷
的粒子是沒有質量的,那麼為什麼沒有任何實驗證據呢?而如果假定
該粒子有質量,規范對稱性就會被破壞。一般物理學家是相信有質
量,因此如何填補這個漏洞就是相當具挑戰性的數學問題。

3、P 問題對NP 問題(The P Versus NP Problems)
隨著計算尺寸的增大,計算時間會以多項式方式增加的型式的問題叫做「P 問題」。

P 問題的P 是Polynomial Time(多項式時間)的頭一個字母。已
知尺寸為n,如果能決定計算時間在cnd (c 、d 為正實數) 時間以下
就可以或不行時,我們就稱之為「多項式時間決定法」。而能用這個
演算法解的問題就是P 問題。反之若有其他因素,例如第六感參與進來
的演算法就叫做「非決定性演算法」,這類的問題就是「NP 問題」,NP 是
Non deterministic Polynomial time (非決定性多項式時間)的縮寫。

由定義來說,P 問題是NP 問題的一部份。但是否NP 問題裡面有
些不屬於P 問題等級的東西呢?或者NP 問題終究也成為P 問題?這
就是相當著名的PNP 問題。

4、.納維爾–史托克方程(Navier–Stokes Equations)
因為尤拉方程太過簡化所以尋求作修正,在修正的過程中產生了
新的結果。法國工程師納維爾及英國數學家史托克經過了嚴格的數學
推導,將黏性項也考慮進去得到的就是納維爾–史托克方程。

自從西元1943 年法國數學家勒雷(Leray)證明了納維爾–史托
克方程的全時間弱解(global weak solution)之後,人們一直想知道
的是此解是否唯一?得到的結果是:如果事先假設納維爾–史托克方
程的解是強解(strong solution),則解是唯一。所以此問題變成:弱解與強解之間的差距有多大,有沒有可能弱解會等於強解?換句話說,是不是能得到納維爾–史托克方程的全時間平滑解?再者就是證
明其解在有限時間內會爆掉(blow up in finite time)。

解決此問題不僅對數學還有對物理與航太工程有貢獻,特別是亂
流(turbulence)都會有決定性的影響,另外納維爾–史托克方程與奧
地利偉大物理學家波茲曼的波茲曼方程也有密切的關系,研究納維
爾–史托克(尤拉)方程與波茲曼方程(Boltzmann Equations)兩
者之關系的學問叫做流體極限(hydrodynamics limit),由此可見納
維爾–史托克方程本身有非常豐富之內涵。

5.龐加萊臆測(Poincare Conjecture)
龐加萊臆測是拓樸學的大問題。用數學界的行話來說:單連通的
三維閉流形與三維球面同胚。
從數學的意義上說這是一個看似簡單卻又非
常困難的問題,自龐加萊在西元1904 年提出之
後,吸引許多優秀的數學家投入這個研究主題。
龐加萊(圖4)臆測提出不久,數學們自然的將
之推廣到高維空間(n4),我們稱之為廣義龐加萊臆測:單連通的



n(n4)維閉流形,如果與n

≥ 維球面有相同的基本群(fundamental group)則必與n維球面同胚。

經過近60 年後,西元1961 年,美國數學家斯麥爾(Smale)以
巧妙的方法,他忽略三維、四維的困難,直接證明五維(n5)以上的


廣義龐加萊臆測,他因此獲得西元1966 年的費爾茲獎。經過20年之
後,另一個美國數學家佛瑞曼(Freedman)則證明了四維的龐加萊臆
測,並於西元1986年因為這個成就獲得費爾茲獎。但是對於我們真
正居住的三維空間(n3),在當時仍然是一個未解之謎。

=

一直到西元2003 年4 月,俄羅斯數學家斐雷曼(Perelman)於
麻省理工學院做了三場演講,在會中他回答了許多數學家的疑問,許
多跡象顯示斐雷曼可能已經破解龐加萊臆測。數天後「紐約時報」首
次以「俄國人解決了著名的數學問題」為題向公眾披露此一消息。同
日深具影響力的數學網站MathWorld 刊出的頭條文章為「龐加萊臆測

被證明了,這次是真的!」[14]。

數學家們的審查將到2005年才能完成,到目前為止,尚未發現
斐雷曼無法領取克雷數學研究所之百萬美金的漏洞。

6.白之與斯溫納頓-戴爾臆測(Birch and Swinnerton-Dyer
Conjecture)
一般的橢圓曲線方程式 y^2=x^3+ax+b ,在計算橢圓之弧長時
就會遇見這種曲線。自50 年代以來,數學家便發現橢圓曲線與數論、

幾何、密碼學等有著密切的關系。例如:懷爾斯(Wiles)證明費馬
最後定理,其中一個關鍵步驟就是用到橢圓曲線與模形式(molarform)之關系-即谷山-志村猜想,白之與斯溫納頓-戴爾臆測就是與
橢圓曲線有關。

60年代英國劍橋大學的白之與斯溫納頓-戴爾利用電腦計算一些
多項式方程式的有理數解。通常會有無窮多解,然而要如何計算無限
呢?其解法是先分類,典型的數學方法是同餘(congruence)這個觀念
並藉此得同餘類(congruence class)即被一個數除之後的余數,無窮
多個數不可能每個都要。數學家自然的選擇了質數,所以這個問題與
黎曼猜想之Zeta 函數有關。經由長時間大量的計算與資料收集,他
們觀察出一些規律與模式,因而提出這個猜測。他們從電腦計算之結
果斷言:橢圓曲線會有無窮多個有理點,若且唯若附於曲線上面的

Zeta 函數ζ (s) = 時取值為0,即ζ (1)

;當s1= 0

7.霍奇臆測(Hodge Conjecture)
「任意在非奇異投影代數曲體上的調和微分形式,都是代數圓之
上同調類的有理組合。」
最後的這個難題,雖不是千禧七大難題中最困難的問題,但卻可
能是最不容易被一般人所了解的。因為其中有太多高深專業而且抽象

『叄』 總結一下,0有哪些數學量,比如0沒有零次方的值,除此之外還有哪些值不存在或存在

0次方底數不為0
根指數不能為0 (0√x 是不存在的)
分母不能為0 即沒有倒數和負倒數
0不能做對數的底數和真數 log

『肆』 數學立體不存在圖

對,現實是不可能存在的,因為這是透視原理.近大遠小.就好比一條公路兩邊平行,但沿公路中間看會感覺兩邊不平行

『伍』 數學期望在什麼情況下不存在呢如題 謝謝了

離散型隨機變數X取可列個值時,它的數學期望要求級數∑|xi|pi收斂,否則數學期望不存在; 連續型隨機變數若在無限區間上取值,其數學期望是一個廣義積分,要求積分絕對收斂,否則數學期望不存在。例如:柯西分布的數學期望EX就不存在。

『陸』 數學中的無意義和不存在是一種東西嗎

數學中的無意義和不存在不是一種東西。

值為0,指這個數值有具體含義,在大小上為0,無意義指此數值沒有具體含義,也就不存在大小。

當解一元二次方程時,若判別式Δ<0,則證明此方程」不存在「實數根,而「存在」兩個虛數根,在初中階段可以說方程無意義,但方程並不是真的」無意義「 ,此時二者就不同。

函數的兩個定義

本質是相同的,只是敘述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從集合、映射的觀點出發。

函數的近代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示,函數概念含有三個要素:定義域A、值域B和對應法則f。其中核心是對應法則f,它是函數關系的本質特徵。

『柒』 數學上公理本來就不存在真與假不存在真與假什麼意思

在數學的公理體系裡,公理是不經證明、而大家都承認為正確的東西。這意味著公理的正確性不是被推理出來的,只是大家都相信而已。

舉個例子。歐氏幾何里的公理「兩條平行線永不相交「,這是沒被證明的,僅僅是大家都接受的一個邏輯起點,在這個基礎上進行討論、建立起一套自圓其說的體系。在另外的公理體系中(比如羅氏幾何),可能就不承認平行線永不相交、而可以認為平行線在無窮遠處有交點,從而建立一套新的邏輯體系。這兩套體繫到底誰對誰錯?沒法判定,無所謂真假,各自體系有各自的用處和長處。

為什麼認可這些不能被證明的公理的存在?必須這樣。我們可以想像,如果要求公理也需要被證明、大家才認同的話,那麼這就沒有盡頭了,因為對所有陳述都可以「為什麼呀「無止境地追問下去。在一定時候必須接受「這個我信了「、而不是無窮地打破砂鍋問到底 -- 這個砂鍋是沒有底的 -- 正常的討論才可以進行、才能開發出有用處的體系。

『捌』 數學中震盪不存在是什麼意思

你應該指的是極限不存在吧?假如當n趨向無窮大的時候,sin x的極限就是在1和-1之間震盪不存在。 還有一個是叫震盪間斷點,函數y=sin(1/x)點x=0沒有定義,當x趨向於0的時候,函數值y在1和-1之間震盪無限次,所以x=0稱作y的震盪間斷點。 不知道是不是你想要的。

『玖』 不存在 如何用數學符號表示

有「存這」個符號,但是沒有不存在這個符號。 存在一般是作為條件,為了簡寫,可以用一個符號表示,不存在一般是作為結論,不必用符號來表示。

『拾』 數學期望在什麼情況下不存在呢

離散型隨機變數X取可列個值時,它的數學期望要求級數∑|xi|pi收斂,否則數學期望不存在; 連續型隨機變數若在無限區間上取值,其數學期望是一個廣義積分,要求積分絕對收斂,否則數學期望不存在.例如:柯西分布的數學期望EX就不存在。

數學期望(mean)(或均值,亦簡稱期望)是試驗中每次可能結果的概率乘以其結果的總和,是最基本的數學特徵之一。它反映隨機變數平均取值的大小。

需要注意的是,期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。

大數定律規定,隨著重復次數接近無窮大,數值的算術平均值幾乎肯定地收斂於期望值。

(10)數學上有哪些不存在的擴展閱讀:

數學期望的應用

1、經濟決策

假設某一超市出售的某種商品,每周的需求量X在10至30范圍內等可能取值,該商品的進貨量也在10至30范圍內等可能取值(每周只進一次貨)超市每銷售一單位商品可獲利500元,若供大於求,則削價處理,每處理一單位商品虧損100元。

若供不應求,可從其他超市調撥,此時超市商品可獲利300元。試計算進貨量多少時,超市可獲得最佳利潤?並求出最大利潤的期望值。

分析:由於該商品的需求量(銷售量)X是一個隨機變數,它在區間[10,30]上均勻分布,而銷售該商品的利潤值Y也是隨機變數,它是X的函數,稱為隨機變數的函數。題中所涉及的最佳利潤只能是利潤的數學期望(即平均利潤的最大值)。

因此,本問題的解算過程是先確定Y與X的函數關系,再求出Y的期望E(Y)。最後利用極值法求出E(Y)的極大值點及最大值。

2、體育比賽問題

乒乓球是我們的國球,上世紀兵兵球也為中國帶了一些外交。中國隊在這項運動中具有絕對的優勢。

現就乒乓球比賽的安排提出一個問題:假設德國國隊(德國隊名將波爾在中國也有很多球迷)和中國隊比賽。賽制有兩種,一種是雙方各出3人,三場兩勝制, 一種是雙方各出5人,五場三勝制,哪一種賽制對中國隊更有利?

分析:由於中國隊在這項比賽中的優勢,不妨設中國隊中每一位隊員德國隊員的勝率都為60%,接著只需要比較兩個隊對應的數學期望即可。

閱讀全文

與數學上有哪些不存在的相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1369
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1350
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:832
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1452
數學中的棱的意思是什麼 瀏覽:1017