導航:首頁 > 數字科學 > 數學教科書編寫體現了什麼教學方法

數學教科書編寫體現了什麼教學方法

發布時間:2023-05-24 06:12:50

Ⅰ 數學教學中有哪些教學方法

數學教學中有哪些教學方法
「瓜傻式」教學法----將數學那種嚴密的邏輯演繹過程還原為生動活潑的知識生成過程。通過讓學生了解所學的數學知識的現實背景,感知知識的的產生過程。掌握解決問題的思路,知道思路的形成過程,這種方法,可以極大激發孩子們的求知慾和創作欲。使枯燥干澀的數學概念演繹變得生動起來。

自主探索式學習----重點在於學生親自體驗學習過程 , 其價值與其說是學生發現 結論 , 不如說更看重學生的探索過程。自主探索式學習重視讓每個學生根據自己的體 驗 , 通過觀察、實驗、猜想、驗證、推理等方式自由地、開放地去探究、去發現、去 「 再創造 」 有關數學問題口在這個過程中 , 學生不僅獲得了必要的數學知識和技能 , 還對數學 知識的形成過程有所了解 , 特別是體驗和學習數學的思考方法和數學的價值。

合作學習----小學數學教學中經常被採用的形式。但目前小組合作學習效益高的較少 , 有的只是流於形式。有的研究者認為 , 小組學習有獨立型、競爭型、依賴型、依存 型等幾種類型。目前我們用得較多的是學生獨立學習後相互交流 , 真正意義上的合 作一一相互依存地來研究或者共同解決一個問題還太少。

「實踐活動」的教學方法----通過實踐活動,培養學生的創新精神和實踐能力,發掘學生潛能,讓學生學有用的數學知識。

……

無論是「優選」還是「創新」,一般都應注意以下四點:一是教學方法的選用或創新必須符合教學規律和原則;二是必須依據教學內容和特點,確保教學任務的完成;三是必須符合學生的年齡、心理變化特徵和教師本身的教學風格;四是必須符合現有的教學條件和所規定的教學時間。另外,在指導思想上,教師應注意用辯證的觀點來審視各種教學方法。

正所謂「教無定法」。
常用的教學方法
進入20世紀80年代以來,伴隨著整個教學領域的深入改革,小學數學教學方法也呈現出蓬勃發展的勢頭。廣大的小學數學教師和教學研究人員,一方面對我國傳統的小學數學教學方法進行大膽的完善與改造,一方面積極地引進國外先進的教學方法,使我國新的教學方法,如雨後春筍,競相涌現。

一、小學數學新教學方法介紹

(一)發現法

發現法是由美國當代著名教育家、認知心理學家布魯納50年代至60年代初所倡導的一種教學方法。

1、發現法的基本含義及特點

發現法是指教師不直接把現成的知識傳授給學生,而是引導學生根據教師和教科書提供的課題與材料,積極主動地思考,獨立地發現相應的問題和法則的一種教學方法。

發現法與其他教學方法相比較,有以下幾個特點:

(1)發現法強調學生是發現者,讓學生自己去獨立發現、去認識,自己求出問題的答案,而不是教師把現成的結論提供給學生,使學生成為被動的吸收者。

(2)發現法強調學生內在學習動機的作用。學生最好的學習動機莫過於他們對所學課程具有內在的興趣。發現法符合兒童好玩、好動、好問和喜歡追根求源的心理特點,遇到新奇、復雜的問題,他們就會積極地去探索。教師在教學中充分利用這一特點,利用新奇、疑難和矛盾等引發學生的思維沖突,促使他們產生強烈的求知慾望,主動地去探究和解決問題,改變了以往傳統教學法僅利用外來刺激促發學生學習的做法。

(3)發現法使教師的主導作用表現為潛在的、間接的。由於該法是讓學生運用已有的知識和教師提供的各種學習材料、直觀教具等,自己去觀察,用頭腦去分析、綜合、判斷、推理,親自去發現事物的本質規律,所以在這個過程中教師的主導作用是潛在的、間接的。

2、發現法的主要優點及其局限性

發現法有如下幾個主要優點。

(1)可以使學生學習的外部動機轉化為內部動機,增強學習的信心。

(2)有助於培養學生解決問題的能力。由於發現法經常練習怎樣解決問題,所以能使學生學會探究的方法,培養學生提出問題和解決問題的能力,以及樂於創造發明的態度。

(3)運用發現法,有助於提高學生的智慧,發揮學生的潛力,培養學生優良的思維品質。

(4)有利於學生對知識的記憶和鞏固。在發現學習的過程中,學生可就已有的知識結構進行內部改組,這種改組,可以使已有的知識結構與要學習的新知識更好的聯系起來,這種系統化和結構化的知識,就更加有助於學生的理解、鞏固和應用。

發現法也有一定的局限性。

(1)就教學效率而言,使用發現法需要花費的時間比較多。因為學生獲得知識的過程是再發現的過程,一切真理都要學生自己去獲得,或者重新發現,而不是由教師簡單地告訴學生,因此,教學過程必然經歷一個較長時間的摸索過程。

(2)就教學內容而言,它的適應是有一定范圍的。發現法比較適用於具有嚴格邏輯的數、理、化等學科,對於人文學科是不太適用的。就適用的學科而言,也是只適用於概念和前後有聯系的概括性知識的教學,如求平均數、運算定律等。而概念的名稱、符號、表示法等,仍需要由教師來講解。

(3)就教學的對象而言,它更適用於中、高年級的學生。因為發現學習必須以一定的基礎知識和經驗為發現的前提條件,因此,年級越高的學生,獨立探索的能力也就會越強。所以,並非所有的教學內容和教學對象都有必要和可能採用發現法教學。

3、發現法教學舉例(一位數除兩位數的教學)

給出一道題如39÷3。學生可先拿39個物品,每3個一份,把它們分成13份。做幾個這樣的題目後,可以讓他們把物品10個組成一組。例如,給出這樣一道題:「哈利買了4條糖果,每條有10塊。他吃了1塊,把剩下的每3塊包成一包,分給同學們,分給了幾個同學?」

學生可能有以下幾種解法:

(1)每3個分成一堆,然後數出分得的堆數。

(2)從3個10中各先拿出1個,剩下的每9個分給3個同學,再把其餘的也每3個分成一堆。

9+9+9+3+3+3+3=39(塊)

↓↓↓↓↓↓↓

3+3+3+1+1+1+1=13(人)

(3)與(2)相似,但他們看出有4個9。

9+9+9+9+3=39(塊)

↓↓↓↓↓

3+3+3+3+1=13(人)

(4)他們看出3個10正好分給10個人,剩下的每3個分成一組。

30+3+3+3=39(塊)

↓ ↓↓↓

10+1+1+1=13(人)

(5)與(4)相似,但他們看出剩下的9正好分給3個人。

30+9=39(塊)

↓ ↓

10+3=13(人)

在學生得出解法之後,全班進行討論。教師對不同的演算法不給出評價。再出一道題,許多學生會選用比他第一次用的更為簡便的方法。教師進一步提出引導性問題,促使學生找出更為有效的計算方法,形成一般的豎式計算。

(二)嘗試教學法

嘗試教學法是小學數學教學方法中一種影響比較大的教學方法。它是一種具有中國特色的教學方法。嘗試教學法是由常州市教育科學研究所的邱學華老師最早設計和提出的,經過在一些地區和全國逐步推廣,到現在已有十多年的時間,取得了很好的教學效果,甚至在國際上也有一定的影響。

1、嘗試教學法的基本內容

什麼是嘗試教學法?嘗試教學法的基本思路就是:教學過程中,不是先由教師講,而是讓學生在上知識的基礎上先來嘗試練習,在嘗試的過程中指導學生自學課本,引導學生討論,在學生嘗試練習的基礎上,教師再進行有針對性的講解。嘗試教學法的基本程序分為五個步驟:出示嘗試題;自學課本;嘗試練習;學生討論;教師講解。

嘗試教學法與普通的教學方法的根本區別就在於,改變教學過程中「先講後練」的方式,以「先練後講」的方式作為教學的主要形式。

嘗試教學法產生的背景是:在20世紀80年代初,我國教學改革已經走上了正軌,國內有許多教學改革的實驗研究。同時,也有許多國外的教學改革的經驗大量地介紹進來。在這種情況下,人們開始思考如何根據我國的教學改革的實驗,研究和創造具有中國特色的,既符合現代教育改革的需要,又具有較強的操作性的教學方法。邱學華老師多年來進行小學數學教學的研究,在「文革」前後進行了多項小學數學教學改革方面的調查與實驗,深感研究一種新的小學數學教學法的必要性。因此,他在分析和對比國內外教學改革的經驗的基礎上,提出了嘗試教學法的設想。他借鑒了中國古代的「啟發式教學」原理、發現法和自學輔導法教學的思路,綜合地分析和研究這些教學法的長處與不足,試圖形成一種獨特的,具有操作性和可行性的教學方法。

Ⅱ 小學數學教學方法有哪些

1、營造良好的學習環境,使學生主動參與數學活動

現代教育家認為,要使學生積極、主動地探索求知,必須在民主、平等、友好合作的師生關系基礎上,創設愉悅和諧的學習氣氛。教師應鼓勵學生大膽地提出自己的見解,即使有時學生說得不準確、不完整,也要讓他們把話說完,保護學生的積極性。和諧愉快的學習氛圍為學生提供了充分展現自我的機會,作為教師只有善於協調好師生之間的互動關系,方可讓多數學生有機會發表自己的見解。

2、用多種教學方式,使學生把數學與生活聯系在一起

人的思維過程始於視角器官。課本上的主題圖具有情感上的吸引力,容易讓學生產生主動學習的意識,激發他們的求知慾與好奇心。因此,在小學數學教學中,教師要充分利用創設主題圖,激發學生對新知識學習的熱情,為學生學習新知識做好鋪墊,讓學生把數學與生活聯系在一起。

數學來源於生活,讓學生感受到數學就在他們的周圍。因此,從學生已有的生活經驗出發,創設生活中的情境,強化感性認識,從而達到學生對數學的理解。

Ⅲ 教學設計中如何體現數學思想和方法

問題是數學的心臟,方法是數學的行為,思想是數學的靈魂。不管是數學概念的建立,數學規律的發現,還是數學問題的解決,乃至整個數學大廈的構建,核心問題在於數學思想方法的培養和建立。在一個人的一生中,最有用的不僅是數學知識,更重要的是數學的思想和數學的意識。因此,在數學教學中,不僅要重視知識形成過程,還要十分重視挖掘在數學知識的發生、形成和發展過程中所蘊藏的數學思想方法。 一、在備課中,有意識地體現數學思想方法 教師要進行數學思想方法的教學,首先要有意識地從教學目的的確定、教學過程的實施,教學效果的落實等各個方面來體現,使每節課的教學、教育目的獲得和諧的統一。通過對教材完整的分析和研究,理清和把握教材的體系和脈絡,統攬教材全局,高屋建瓴。然後建立各類概念、知識點或知識單元之間的界面關系,歸納和揭示其特殊性質和內在的一般規律。因而,在備課時就必須把數學思想方法的教學從鑽研教材中加以挖掘。例如,在備《二元一次方程組》(北師大版八年級上冊第七章)這一章時,就要挖掘方程思想、建模思想、化未知為己知、化二元為一元的化歸思想方法。 二、以教材知識為載體,在教學中滲透數學思想方法 數學教材是按數學內容的邏輯體系與認識理論的教學體系相結合的辦法來安排的。受篇幅的限制,教材內容較多顯示的是數學結論,對數學結論裡面所隱含的數學思想方法以及數學思維活動的過程,並沒有在教材里明顯地體現。然而,數學是知識與思想方法的有機結合,沒有不包含數學思想方法的數學知識,也沒有游離於數學知識之外的數學思想方法。這就要求教師在教學中,深入挖掘隱含在教材里的數學思想方法,精心設計課堂教學過程,展示數學思維過程,這樣才有助於學生了解其中數學思想方法的產生、應用和發展的過程;理解數學思想方法的特徵,應用的條件,掌握數學思想方法的實質。例如立體幾何教學中許多內容都體現了一個重要思想方法把空間里的問題轉化為平面上的問題,在教學過程中,就要善於引導學生從具體問題中提煉出這一具有普遍指導作用的思想方法。並進一步上升為降維的思想方法,再總結出更一般的更高層次的思想轉化與化歸。 不同的教學內容,可根據其特點,選配不同的數學思想方法進行教學:一般在知識的概念形成階段導入概念型數學思想,如方程思想、相似思想、已知與未知互相轉化的思想、特殊與一般互相轉化的思想等;在知識的結論、公式、法則等規律的推導階段,強調和灌輸思維方法,如解方程的如何消元降次、函數的數與形的轉化、判定兩個三角形相似有哪些常用思路等;在知識的總結階段或新、舊知識結合部分,選配結構型的數學思想,如函數與方程思想體現了函數、方程、不等式間的相互轉化,分組討論思想體現了局部與整體的相互轉化。 三、在掌握重點、突破難點中,有意識地運用數學思想方法 數學教學中的重點,往往就是需要有意識地運用或揭示數學思想方法之處。數學教學中的難點,往往與數學思想方法的更新交替、綜合運用、跳躍性較大有關。因此,教師要掌握重點,突破難點,更要有意識地運用數學思想方法組織教學。例如,二次根式的加減運算是一個教學難點,為了突破難點,就要運用類比思想、整體思想、化歸轉換思想方法尋找解決問題途徑,採用類比整式的加減運算的手段,構造出具體形象的數學模型,從而進行猜想、推理、研究,實現從未知到已知的轉化。 四、在展現數學知識的形成與應用過程中,提煉數學思想方法 數學知識發生的過程也是其思想方法產生的過程。在此過程中,向學生提供豐富的、典型的、正確的直觀背景材料,採取問題情境建立模型解釋、應用與拓展的模式,通過對相關問題情境的研究為有效切入點,對知識發生過程的展示,使學生的思維和經驗全部投入到接受問題、分析問題和感悟思想方法的挑戰之中,並在此過程領會如數感、符號感、空間觀念、統計觀念、應用意識和推理能力等數學思想方法。例如在講授《探索勾股定理》(北師大版八年級上冊第一章第一節)時,將概念、結論性知識的教學設計成再發現、再創造的教學:先讓學生在方格紙上計算面積的方法理解勾股定理,再用拼圖的方法驗證其內容,讓學生經歷觀察、歸納、猜想和驗證的數學發現過程,使學生在動腦、動手的過程中領悟、體驗、提煉數學思想方法數形結合思想(將三角形三邊的平方與正方形面積聯系起來,再比較同一正方形面積的幾種不同的代數表示,得到勾股定理)。在展現數學知識的形成與應用過程中,著重過程(不要過早下結論),引導學生積極參與數學定理、性質、法則、公式等結論的探索、發現、推導過程,弄清每個結論的因果關系。經過分析、綜合、比較、抽象、概括等思維的邏輯加工,完整地體現這一生動過程,不失時機地引導學生(不要包辦代替),揭示數學思想方法本質特徵。 五、通過範例教學,挖掘數學思想方法 有意識地組織學生進行必要的解題訓練,設計具有探索性的、能從中抽象一般和特

Ⅳ 教學設計如何體現數學思想和方法

1、教學設計如何體現數學思想和方法
數學思想方法作為基礎知識的重要組成部分,但又有別於基礎知識。除基本的數學方法外,其他思想方法都呈隱蔽形式,滲透於學習新知識和運用知識解決問題的過程中。今天,朴新小編給大家帶來教學設計如何體現數學思想和方法.
在問題的解決過程中滲透數學思想方法
問題解決是以思考為內涵,以問題目標為定向的心理活動,是在新情境下通過思考去實現學習目標的活動,「思考活動」和「探索過程」是問題解決的內核。數學領域中的問題解決,與其他科學領域用數學去解決問題不同。數學領域里的問題解決,不僅關心問題的結果,而且還關心求得結果的過程,即問題解決的整個思考過程。數學問題解決是按照一定的思維對策進行的思維過程。在數學問題解決的過程中,既運用抽象、歸納、類比、演繹等邏輯思維形式,又運用直覺、靈感(頓悟)等非邏輯思維形式來探索問題的解決辦法。

問題是數學的心臟,數學問題的解決過程,實質是命題的不斷變換和數學思想方法的反復運用過程。數學思想方法是數學問題的解決觀念性成果,它存在於數學問題的解決之中。數學問題的步步轉化,無不遵循數學思想方法指示的方向,因此,通過問題解決,可以培養學生的數學意識,構造數學模型,提供數學想像;加以實際操作,誘發創造動機,可以把數學嵌入活的思維活動之中,並不斷在學數學、用數學的過程中,引導學生學習知識、掌握方法、形成思想,促進思維能力的發展。 數學問題的解決過程是用「不變」的數學思想和方法去解決不斷「變換」的數學命題,在數學問題的解決過程中滲透數學思想和方法,不僅可以加快和優化問題解決的過程,而且還可以達到舉一反三,觸類旁通的效果。
在復習與小結中提煉、概括數學思想方法
小結與復習是數學教學的一個重要環節,揭示知識之間的內在聯系以及歸納、提煉知識中蘊含的數學思想方法是小結與復習的功能之一。數學的小結與復習,不能僅停留在把已學的知識溫習記憶一遍的要求上,而要去努力思考新知識是怎樣產生、展開和證明的,其實質是什麼?怎樣應用它等。小結與復習是對知識進行深化、精煉和概括的過程,它需要通過手和腦積極主動地開展活動才能達到。因此,在這個過程中,提供了發展和提高能力的極好機會,也是滲透數學思想方法的極好機會與途徑。
學生學完一個單元的內容,應在整體上對該單元的內容有一個清晰、全面的認識。因此,在小結與復習時,應提煉、概括這一單元知識所涉及的數學思想方法;並從知識發展的過程來綜觀數學思想方法所起的作用,以新的更為全面的觀點分析所學知識;從數學思想方法的角度進行提高與精練。由於同一內容可體現不同的數學思想方法,而同一數學思想方法又常常蘊藏在許多不同的知識點里,因此,在小結與復習時,還應從縱橫兩方面整理出數學思想方法及其系統。

2、數學教學體現數學思想和方法
(1)滲透「方法」,了解「思想」。由於初中學生數學知識比較貧乏,抽象思想能力也較為薄弱,把數學思想、方法作為一門獨立的課程還缺乏應有的基礎。因而只能將數學知識作為載體,把數學思想和方法的教學滲透到數學知識的教學中。教師要把握好滲透的契機,重視數學概念、公式、定理、法則的提出過程,知識的形成、發展過程,解決問題和規律的概括過程,使學生在這些過程中展開思維,從而發展他們的科學精神和創新意識,形成獲取、發展新知識,運用新知識解決問題。忽視或壓縮這些過程,一味灌輸知識的結論,就必然失去滲透數學思想、方法的一次次良機。如初中代數課本第一冊《有理數》這一章,與原來部編教材相比,它少了一節――「有理數大小的比較」,而它的要求則貫穿在整章之中。在數軸教學之後,就引出了「在數軸上表示的兩個數,右邊的數總比左邊的數大」,「正數都大於0,負數都小於0,正數大於一切負數」。而兩個負數比大小的全過程單獨地放在絕對值教學之後解決。教師在教學中應把握住這個逐級滲透的原則,既使這一章節的重點突出,難點分散;又向學生滲透了形數結合的思想,學生易於接受。

在滲透數學思想、方法的過程中,教師要精心設計、有機結合,要有意識地潛移默化地啟發學生領悟蘊含於數學之中的種種數學思想方法,切忌生搬硬套,和盤托出,脫離實際等錯誤做法。比如,教學二次不等式解集時結合二次函數圖象來理解和記憶,總結歸納出解集在「兩根之間」、「兩根之外」,利用形數結合方法,從而比較順利地完成新舊知識的過渡。
(2)訓練「方法」,理解「思想」。數學思想的內容是相當豐富的,方法也有難有易。因此,必須分層次地進行滲透和教學。這就需要教師全面地熟悉初中三個年級的教材,鑽研教材,努力挖掘教材中進行數學思想、方法滲透的各種因素,對這些知識從思想方法的角度作認真分析,按照初中三個年級不同的年齡特徵、知識掌握的程度、認知能力、理解能力和可接受性能力由淺入深,由易到難分層次地貫徹數學思想、方法的教學。如在教學同底數冪的乘法時,引導學生先研究底數、指數為具體數的同底數冪的運算方法和運算結果,從而歸納出一般方法,在得出用a表示底數,用m、n表示指數的一般法則以後,再要求學生應用一般法則來指導具體的運算。在整個教學中,教師分層次地滲透了歸納和演繹的數學方法,對學生養成良好的思維習慣起重要作用。

3、活躍數學課堂氣氛
1.語言要親切,富有感情,使學生產生好學之樂
要使學生始終保持積極的學習心態,具有飽滿的學習熱情,在教學的過程中,教師就要 使用親切感人的課堂教學語言,以此來保證教學效果。教師在教學過程中對待一些差生,要 維護他們的自尊心,不要對學生進行過多地指責、諷刺、挖苦,否則,長此以往會使學生喪 失學習數學的信心。要讓學生主動參與學習,就要給學生適當的鼓勵。在教學過程中,教師 讓學生回答問題的時候,可以多使用積極鼓勵性的語言對學生進行評價,讓學生有信心去學, 使他們獲得學習的成就感,進而讓學生產生學習的興趣,由於數學比較抽象,難懂,邏輯性 較強,所以在教學中教師要用語言營造一種具有趣味性的學習氛圍,激發學生的學習興趣, 讓學生積極主動地去學習數學。
2.快樂實踐——讓數學課堂生活化、探究化

實踐是創造的源泉。脫離了實踐活動的數學將成為無源之水,無本之木。現代教育思想認為:數學教學應該是數學活動的教學,學生的思維活動只有通過數學活動才有可能被激活,才能迸射出創新的火花。因此,在實際教學中就要把課堂知識的學習和社會體驗結合起來,使學生的學習渠道多樣化,學習的方式生活化,用動手實踐這把"鑰匙"開啟學生緊閉的心智,喚醒學生沉睡的潛能,激活學生封存的記憶,放飛學生囚禁的情愫,讓學生在動手實踐中對知識的認識和體驗不斷深化、豐滿、鮮活起來。

3.創設情景調動課堂氣氛

從心理學的角度來講,小學生有著好奇心理、疑問心理、愛美心理和活潑好動的特點。作為老師因從這些方面多去思考,充分的發揮小學生非智力因素在學習中的作用。在課堂中創設出學與"玩"交融為一體的教學方法,使學生在"玩"中學,在學中"玩"的情景。在課堂上創造情景的方法有很多,我們要根據自己班級學生的實際情況選擇合適的方法,提供具體的內容,生動活潑的形式,新奇動人的事物,以恰當的手法表現出來,讓學生真正的體會到其中的樂趣。如我在教作文《記一次游戲》時,我創設了這樣一個課堂情景。我與學生一起玩貼鼻子的游戲,自然,這個游戲其樂無窮,學生個個開懷大笑。在游戲中,我讓學生仔細觀察游戲過程以及人物的語言、動作、神態,同時談談自己的體會或感觸,一節課里學生的熱情始終高漲。這樣,既解決了學生寫作文"寫什麼","怎樣寫"兩大老大難問題,又提高了學生的學習興趣,這樣課堂氣氛會更活躍些的。

4、學習數學的興趣激發
讓學生享受成功的愉快,讓學生感受成功的快樂
心理學家研究表明,興趣能夠讓學生走向成功。教師要讓學生在不斷獲得成功以後收獲幸福和快樂的感受,產生學習的成就感,產生對學習的快樂的感受,並走向更多的成功,獲得一次又一次的成功,並激發學生持久的學習興趣。教師要從學生的實際情況出發,創造學生自由競爭的機會,鼓勵不同層次的學生都獲得不同程度的成功,讓學生都能夠跳躍起來摘桃子,收獲學生學習的信心。教師可以創造機會,讓學生解答不同的難題,並讓學生完成不同的學習難題。
教師要教育學生面向全體學生,做到因材進行教育,讓每個學生都獲得成功的感受,讓每個學生都收獲學習的幸福。在教學過程中,教師要教育學生注意學習的深度,注意學習的精準性,注意學習的速度,教師要重視精講,讓學生精練,教師要在課堂上將每節課的難點都講解結束,教師也要根據學生學科的特點,對學生進行分層教學。教師要讓學生進行大膽地學習實踐,滿足學生深入研究題目的本質的特點,並要求學生在教師的指導下,完成數學學習任務,並對學生的學習潛能加以激發,鼓勵增加練習的環節,重視分清楚作業的要求,讓學生做好基本題的基礎上,更多地完成任務的題目,並設計好教學的過程,引導學生思考質量高的題目。
教師要運用數學美,來增長學生的學習潛能
數學美不同於自然美和藝術美,教師的教學中所展現的數學美主要是內在的美,邏輯的美和理智的美,而數學其實還包含著隱藏的美,深邃的美和思想內容的美等。教師要引導學生去領悟去發現數學的美,通過抽象數學符號的運用,數學公式和數學定理的運用引導學生探究數學學習思想,開展智力活動,豐富學生的情感。數學教師要引導學生深入剖析數學的情感,激發學生數學學習興趣,教育學生有效掌握數學學習內容,提升學生的數學學習的能力,發展學生的數學創造能力,實現數學教學的價值。

教師要引導學生學會發現,理解數學的游戲功能,並通過數學學習鍛煉學生的頭腦,讓學生探究數學世界的奧秘,讓學生感受數學活動的美。教師要利用數學教材的美,讓學生探究數學的美,激發學生的數學學習動機和數學學習興趣,引導學生積極思考,充分感受數學的美,追求數學的美。在數學教師提出問題的時候,教師要讓學生充分感受數學的美,吸引學生學習的興趣,在學生分析問題的時候,教師要讓學生感受到數學思維的質量,引導學生去掌握數學學習的奧秘,在進行數學小結的時候,教師要讓學生研究數學的和諧的統一的簡潔的美,以此來減輕學生的數學學習負擔,讓學生充分感受數學知識結構的精彩。

Ⅳ 新課標理念下中學數學教學中常用的教學方法有哪些

1)講授法講授法是教師通過口頭語言向學生傳授知識的方法。講授法包括講述法、講解法、講讀法和講演法。教師運用各種教學方法進行教學時,大多都伴之以講授法。這是當前我國最經常使用的一種教學方法。
2)談論法談論法亦叫問答法。它是教師按一定的教學要求向學生提出問題,要求學生回答,並通過問答的形式來引導學生獲取或鞏固知識的方法。談論法特別有助於激發學生的思維,調動學習的積極性,培養他們獨立思考和語言表述的能力。初中,尤其是小學低年級常用談論法。
談論法可分復習談話和啟發談話兩種。復習談話是根據學生已學教材向學生提出一系列問題,通過師生問答形式以幫助學生復習、深化、系統化已學的知識。啟發談話則是通過向學生提出來思考過的問題,一步一步引導他們去深入思考和探取新知識。
3)演示法演示教學是教師在教學時,把實物或直觀教具展示給學生看,或者作示範性的實驗,通過實際觀察獲得感性知識以說明和印證所傳授知識的方法。
演示教學能使學生獲得生動而直觀的感性知識,加深對學習對象的印象,把書本上理論知識和實際事物聯系起來,形成正確而深刻的概念;能提供一些形象的感性材料,引起學習的興趣,集中學生的注意力,有助於對所學知識的深入理解、記憶和鞏固;能使學生通過觀察和思考,進行思維活動,發展觀察力、想像力和思維能力。
4)練習法練習法是學生在教師的指導下,依靠自覺的控制和校正,反復地完成一定動作或活動方式,藉以形成技能、技巧或行為習慣的教學方法。從生理機制上說,通過練習使學生在神經系統中形成一定的動力定型,以便順利地、成功地完成某種活動。練習在各科教學中得到廣泛的應用,尤其是工具性學科(如語文、外語、數學等)和技能性學科(如體育、音樂、美術等)。練習法對於鞏固知識,引導學生把知識應用於實際,發展學生的能力以及形成學生的道德品質等方面具有重要的作用。
5)讀書指導法
讀書指導法是教師指導學生通過閱讀教科書、參考書以獲取知識或鞏固知識的方法。學生掌握書本知識,固然有賴於教師的講授,但還必須靠他們自己去閱讀、領會,才能消化、鞏固和擴大知識。特別是只有通過學生獨立閱讀才能掌握讀書方法,提高自學能力,養成良好的讀書習慣。
6)課堂討論法
課堂討論法是在教師的指導下,針對教材中的基礎理論或主要疑難問題,在學生獨立思考之後,共同進行討論、辯論的教學組織形式及教學方法,可以全班進行,也可分大組進行。
7)實驗法實驗法是學生在教師的指導下,使用一定的設備和材料,通過控制條件的操作過程,引起實驗對象的某些變化,從觀察這些現象的變化中獲取新知識或驗證知識的教學方法。在物理、化學、生物、地理和自然常識等學科的教學中,實驗是一種重要的方法。一般實驗是在實驗室、生物或農業實驗園地進行的。有的實驗也可以在教室里進行。實驗法是隨著近代自然科學的發展興起的。現代科學技術和實驗手段的飛躍發展,使實驗法發揮越來越大的作用。通過實驗法,可以使學生把一定的直接知識同書本知識聯系起來,以獲得比較完全的知識,又能夠培養他們的獨立探索能力、實驗操作能力和科學研究興趣。它是提高自然科學有關學科教學質量不可缺少的條件。
8)啟發法啟發教學可以由一問一答、一講一練的形式來體現;也可以通過教師的生動講述使學生產生聯想,留下深刻印象而實現。所以說,啟發性是一種對各種教學方法和教學活動都具有的指導意義的教學思想,啟發式教學法就是貫徹啟發性教學思想的教學法。也就是說,無論什麼教學方法,只要是貫徹了啟發教學思想的,都是啟發式教學法,反之,就不是啟發式教學法。
9)實習法實習法就是教師根據教學大綱的要求,在校內外組織學生實際的學習操作活動,將書本知識應用於實際的一種教學方法。這種方法能很好地體現理論與實際相結合的精神,對培養學生分析問題和解決問題能力,特別是實際操作本領具有重要意義。實習法,在自然科學各門學科和職業教育中佔有重要的地位。這種方法和實驗方法比較起來,雖有很多類似的地方,但它在讓學生獲得直接知識,驗證和鞏固所學的書本知識

Ⅵ 數學的教學方法有哪些

有7種常用的數學教學方法:

1.講授法是一種教學方法,教師使用口語來描述情境,敘述事實,解釋概念,論證原則和澄清規則。

2..談話法又稱回答法,是通過教師和學生之間的對話傳播和學習知識的方法。其特點是教師指導學生利用現有的經驗和知識回答教師提出的問題,獲取新知識或鞏固和檢查所獲得的知識。

3.討論方法是一種方法,使整個班級或小組圍繞某個中心問題發表自己的意見和看法,共同探索,互相激勵,進行頭腦風暴和學習。

4.演示方法是一種教學方法,教師通過現代教學方法向學生展示物理或物理圖像進行觀察,或通過示範實驗,使學生獲得知識更新。它是一種輔助教學方法,通常與講座,對話,討論等結合使用。

5.練習法是學生在教師指導下鞏固知識,培養各種學習技能的基本方法。這也是學生學習過程中的一項重要實踐活動。

6.實驗法是一種教學方法,學生在教師的指導下使用某些設備和材料,通過操作引起實驗對象的某些變化,並通過觀察這些變化獲得新知識或驗證知識。一種常用於自然科學學科的方法。

7.實習是一種教學方法,學生可以使用某些實習場所,參加某些實習,掌握一定的技能和相關的直接知識,或者驗證間接知識並全面應用所學知識。

(6)數學教科書編寫體現了什麼教學方法擴展閱讀:

數學教學方法(methods. of mathematics teach-ing)教學方法的一種.教師指導學生學好數學基礎知識,提高數學基本技能,發展數學才能,進行思品德教育的方式、方法.它既包括了教師教的方法,也包括了學生學的方法.數學教學方法對於激發學生學習數學的興趣,實現數學教學目的,提高數學教學質量,都起著重要的作用.

遠在中國春秋末期和古希臘時期,就有講解、問答、練習、復習等方法的記載.古代主要採用講授法,近代推行了演示、觀察、實驗、參觀等新方法,並改進了解、談話等方法.近些年來隨著現代科學技術的進步,現代化教學手段的使用,教育學與心理學新成就的出現,資訊理論、控制論與系統論新學科的建立與發展,為數學教學方法的改進與發展提供了良好條件。

常用的數學教學方法有:啟發、講解、談話、練習、討論、演示、實習、觀察、復習等,其中,啟發、講解、談話、練習等用的較多.當前國內外正在實驗的數學教學方法有:發現、研究、自學輔導、程序教學、最優化教學、演算法化教學、「讀讀、議議、講講、練練」等。

Ⅶ 小學數學教學方法與手段一般有哪些

隨著新課改的不斷深入,小學數學應該跟隨時代的發展而不斷創新和改變。蘇教版小學數學教材中的「動手做」主題教學,通過教師在「做中教」,學生在「做中學」充分發揮了學生的主體作用,喚醒了學生的主動性,生動直觀地將數學知識由簡入難循序漸進地展現給學生,通過學生主動的探究、實際的操作,開發學生的思維,讓學生深刻理解數學知識,從而提升學生的數學綜合能力。
一、整合、改進教材,加深與課本的聯系
數學是一門實用性極強的科目,「動手做」教學方法剛好從實踐出發,培養學生的實際應用能力,另外,數學這個系統性的知識網路,需要教師注重數學知識的整體性和統一性,把握小學生的性格特點,將「動手做」主題教學與課本緊密相連,引導學生系統把握數學知識,構建自己的知識網路。
如在學習蘇教版小學數學一年級上冊「比一比」一課時,教師要對這節課做好整體把握,為學生精心設計好課堂中「比一比」的項目,讓學生通過親身體驗這節課的數學知識,能夠直觀形象地對知識有更深的認識。在課堂中,當教師教到比個子大小的時候,可以讓學生站起來與自己的同桌比一比誰高,讓學生清楚的明白什麼是高,什麼是矮。之後,教師可以讓學生將鉛筆盒裡的鉛筆拿出來,比一比哪支鉛筆長,哪支鉛筆短。另外教師為了迎合小學生愛玩的天性,為學生精心准備一個小游戲,讓學生能夠更加積極主動參與到數學教學中。教師先跟學生說明要做的游戲,但是做完游戲要回答教師的問題。教師先找兩個身體情況差不多的學生,在教室的講台上設置一個起點,將教室的後門作為終點,讓其中一個學生沿直線跑到後門,讓另一個學生從遠離門的一側跑到後門,看誰先跑到後門。然後分別問兩個學生:「你為什麼先到?你為什麼後到?」然後學生回答:「因為我不如他跑得快!」然後,教師讓學生再來一次比賽,但是將兩個學生跑的路線換一下再跑。這次的結果與上一次相反,還是靠近門一側的學生先到後門。那麼教師的問題又來了:「這次是不是你比他跑得快呢?」然後兩個學生恍然大悟:「因為靠近門一側的距離短!」通過實踐,學生更能開動自己的大腦,主動去思考問題了,通過自己的認知和邏輯思維來判斷、分析,從而找到正確的答案。這樣更能激發學生的學習興趣,開發學生的潛力,讓學生在實踐中逐步成長,培養學生各方面的能力。
二、實驗操作,積累實踐經驗
新版蘇教版小學數學將「動手做」作為教學的主體,教材中增加了更多具有實踐意義的探究性實驗活動,而且這些實踐活動會貫穿小學教學始終,讓學生在這些實踐活動中找到學習數學的樂趣,在實踐中獲得更多的經驗,以滿足學生對數學學習的需求。
如在學習蘇教版小學數學一年級上冊「認識圖形(一)」時,教師可以為這節課准備一個實驗教學活動,設計步驟為:提出問題—制訂實驗方案—進行實驗—分析現象提出問題—共享實驗結果。學生在簡單地認識了基本的物體形狀後,並知道了實驗流程,教師就可以先給學生提出問題:「這些物體中,哪個跑得最快呢?」然後學生自由組織,主動開動大腦設計實驗步驟。學生根據自己的生活經驗,將物體依次放到一個斜放的木板上,然後觀察長方體、正方體、圓柱體和球形是否都能夠滑下來,接著將物體兩兩一組進行比較,選擇下滑比較快的物體,再重復此項操作,直到比出滑下最快的物體,最後學生通過自己設計的實驗得到了球形是「跑得最快」的物體。通過整個課堂教學過程,在教師的引導下,學生充分發揮了自己的優勢,利用自己的思維設計出了科學合理的實驗,證明了自己的猜想。在實驗中,鍛煉並考驗了學生的思維能力、邏輯能力、分析問題和解決問題的能力,讓學生在實驗中積累了豐富的實踐經驗和生活經驗,以及解決問題的思考經驗,使學生的能力得到了全面提升。
綜上所述,小學數學是小學生十分重要的數學啟蒙階段,是小學生數學生涯的關鍵期。此階段小學生的可塑性極強,尤其是低年級的小學生,他們的思想就像一張白紙,接受能力極強,給他們畫下什麼就能記住什麼。此外,影響一生的良好習慣,也大多在此時期形成,因此,教師應該抓住這個時機,利用蘇教版小學數學教材中的新型課題「動手做」去開發學生的潛力,激發學生學習興趣,培養學生自主學習能力,不斷完善教學制度,創新和改革教學模式,全面提升學生的數學能力和素養,讓學生能夠在輕松愉快的「做」中健康成長。

Ⅷ 小學數學學科採用什麼教學方式

(一)講授法講授法是教師運用口頭語言系統地向學生傳授知識的方法。講授法是一種最古老的教學方法,也是迄今為止在世界范圍內應用最廣泛、最普遍的一種教學方法。講授法的基本形式是教師講、學生聽,具體地說,又可以分為講述、講讀、講解三種方式。
講述:教師向學生敘述、描繪事物和現象。
講解:教師向學生解釋、說明、論證概念、原理、公式等。
講讀:教師利用教科書邊讀邊講。
以上三種方式之間沒有嚴格的界限,在教學活動中經常穿插結合地使用。
講授法的優點在於,可以使學生在比較短的時間內獲得大量的、系統的知識,有利於發揮教師的主導作用,有利於教學活動有目的有絕游虛計劃地進行。講授法的缺點在於,容易束縛學生,不利於學生主動、自覺地學習,而且對教師個人的語言素養依賴較大。
教師運用講授法,應當注意以下幾點。
1.保證講授內容的科學性和思想性。教師講授的概念、原理、事實、觀點必須是正確的,這就要求教師認真備課和教學。
2.講授要做到條理清楚、重點分明。講授邏輯清楚,學生才能夠理解清楚。
3.講究語言藝術。教師的語言水平直接決定著講授法的效果,因此必須不斷注重和提高自己的語言修養。首先要做到語言清晰、准確、精練,既邏輯嚴密又清楚明白;其次,要努力做到生動形象、富於感染力,這對於小學生尤其重要;再次,還應當注意語音的高低、語速的快慢,講究抑揚頓挫。
4.注意與其他教學方法配合使用。小學生的注意時間有限,在整節課中完全採用講授法很難取得良好效果,教師應當善於將講授法與其他教學方法和手段交叉替換使用,避免學生因長時間聽講出現疲勞和注意渙散現象。
(二)談話法
談話法是教師根據學生已有的知識經驗,藉助啟發性問題,通過口頭問答的方式,引導學生通過比較、分析、判斷等思維活動獲取知識的教學方法。談話法的基本形式是學生在教師引導下通過獨立思考進行學習。
談話法的優點在於,能夠比較充分地激發學生的主動思維,促進學生的獨立思考,對於學生智力的發展有積極作用,同時也有助於學生語言表達能力的鍛煉和提高。談話法的缺點在於,與講授法相比,完成同樣的教學任務,它需要較多的時間。此外,當學生人數較多時,很難照顧到每一個學生。因此,談話法經常與講授法等其他方法配合使用。
教師運用談話法,應當注意以下幾點。
1.做好充分的准備。圍繞什麼內容進行談話?提出哪些問題?提問哪些學生?以及學生可能做出什麼樣的回答?怎樣通過進一步的提問引導學生?等等,教師都應當在事前周密考慮和安排。
2.談話要面向全體學生。盡管談話只能在教師與個別學生之間進行,教師還是可以通過努力吸引所有的學生。首先,談話的內容應當是能夠引起全體學生注意的、在教學中具有普遍性和重要性的問題。其次,教師應當盡可能使得談話對象有代表性,比如選擇不磨悄同層次的學生。再次,在談話時適時加以適當的解釋、說明作為補充。
3.在談話結束時進行總結。在談話中學生的理解和並燃掌握往往表達得不夠准確、精練,因此在談話的最後階段,教師應當用規范和科學的表述對學生通過談話所獲得的知識加以概括總結,從而強化他們的收獲。
(三)討論法
討論法是在教師指導下,學生圍繞某個問題發表和交換意見,通過相互之間的啟發、討論、商量獲取知識的教學方法。討論法的基本形式是學生在教師的引導下藉助獨立思考和交流學習。
討論法的優點在於,年齡和發展水平相近的學生共同討論,容易激發興趣、活躍思維,有助於他們聽取、比較、思考不同意見,在此基礎上進行獨立思考,促進思維能力的發展。此外,討論法能夠普遍而充分地給予每一個學生表達自己觀點和意見的機會,調動所有學生的學習積極性,並且有效地促進學生口頭語言能力的發展。討論法的缺點在於,受到學生知識經驗水平和能力發展的限制,容易出現討論流於形式或者脫離主題的情況,對小學生而言更是如此,這需要教師加以注意。
教師運用討論法,應當注意以下幾點。
1.選好討論內容。首先,要選擇那些有討論價值的內容,一般來說,討論內容應當是教學內容中比較重要的事實、概念、原理等。其次,要選擇難度恰當的內容,一般來說,過於簡單或過於復雜的內容都不適當,前者難以激起學生的學習熱情,後者則容易挫傷學生的積極性。
2.肯定學生各種意見的價值。對於未知的東西,任何意見都是有價值的。學生總是從自己的邏輯出發去理解和思考,因此各種不同意見盡管可能離正確答案相去甚遠,但卻最真實地反映了學生的想法。教師不應當「裁判」,急於指出各種意見正確或錯誤,而要讓學生暢所欲言,通過充分的討論理解什麼是對、什麼是錯,以及為什麼對、為什麼錯。
3.善於引導。教師應當在學生討論時全面巡視、注意傾聽,善於捕捉討論中反映出來的問題。在討論遇到障礙、深入不下去時教師適當點撥,在討論脫離主題時加以提醒,在討論結束時幫助學生整理結論和答案,等等。這些對於討論法的運用都是必不可少的。
(四)練習法
練習法是學生在教師指導下,進行各種練習,從而鞏固知識、形成技能技巧的教學方法。練習法的基本形式是學生在教師指導下的一種實踐性學習。
練習法的優點在於,可以有效地發展學生的各種技能技巧。任何技能技巧都是通過練習形成、鞏固和提高的,在教師指導下進行各種及時、集中的練習,能夠在這方面取得比較迅速的效果。
教師運用練習法,應當注意以下幾點。
1.明確練習的目的和要求。要讓學生知道為什麼進行練習,怎樣才是達到了練習的要求,使學生的練習具有目的性和自覺性,避免練習的盲目性和機械性。
2.指導正確的練習方法。教師要在練習之前講解和示範正確的練習方法,並且保證學生基本掌握,以便提高練習的效果。
3.合理安排練習步驟。教師應當使練習有計劃地進行,循序漸進。
4.科學掌握練習量。技能技巧的練習需要一定的練習量,但並不是越多越好,超過學生承受能力的練習會導致適得其反的結果。教師要根據小學生的身心發展特點來確定練習量。此外,一般來說,分散練習比過於集中的練習效果更好,將某種練習分成時間較短的幾次完成要比一次性安排更為科學。
5.及時給予學生反饋。要使學生及時知道練習的結果,以便糾正錯誤和鞏固成績。
6.練習方式要多樣化。要防止單一、重復的練習方式,根據教學任務和學生實際,將口頭的與書面的、記憶的與操作的、課內的與課外的……等不同方式結合使用。採取多樣化的練習方式,可以保持學生的興趣和注意,提高練習的效果。
4 讀書指導法
讀書指導法是教師 目的、有計劃地指導學生通過獨立閱讀教材和參考資料獲得知識的一種教學方法。
(七)以直觀形式獲得直接經驗的方法
這類教學方法是指教師組織學生直接接觸實際事物並通過感知覺獲得感性認識,領會所學的知識的方法。它主要包括演示法和參觀法。
(五 ) 演示法
演示法是教師把實物或實物的模象展示給學生觀察,或通過示範性的實驗,通過現代教學手段,使學生獲得知識更新的一種教學方法。它是輔助的教學方法,經常與講授、談話、討論等方法配合一起使用。
(六) 讀書指導法
讀書指導法是教師 目的、有計劃地指導學生通過獨立閱讀教材和參考資料獲得知識的一種教學方法。
學法指導方法
學法指導應體現多層次多形式;通常有這樣幾種形式。
l、滲透指導
這是教師在課堂上見縫插針,隨時滲透。
2、講授指導
這是開設學法指導課,向學生直接講授學法知識。
3、交流指導
這是教師組織學生總結交流學習經驗,達到取長補短的目的。
4、點撥指導
這是學生在學習迷茫時,教師給以恰當點撥提示。
5、示範指導
有些方法僅靠教師講解是不夠的,必要時教師要做示範,讓學生效仿
小學數學學法指導
結合小學數學學科特點,我們認為小學數學學法指導應包括以下幾方面內容:
1.讓學生掌握基本的學習方法,養成良好的學習習慣基本的學習方法是學法指導的基礎,也是一項重要的常規性工作。可以根據教學的各個環節,讓學生掌握基本學習方法的訓練途徑。比如,怎樣預習,怎樣聽課,怎樣記筆記,怎樣練習,怎樣做作業,怎樣復習小結等。針對每個環節的特點,學生進行學法指導,比如數學概念、算理、法則、公式等各類基礎知識的學法研究也屬於這個范疇。
2.引導學生積極參與學習,讓他們學會數學的思維方法數學學習離不開學生的數學活動,經過學生動手、動腦等親身的感受,才能透徹掌握知識,形成能力。學習數學要會讀、會聽、會想、會說、會寫,「會想」也就是會「思考」,教會學生學會思考,掌握—思維方法,形成良好的數學思維品質是數學教學成功的標志。教學中,教師要經常運用比較、分析、綜合、抽象、概括、判斷、推理等基本的思維方法,並在教學活動之中進行潛移默化的影響。久而久之,學生就一定能夠掌握思考問題的方法。另外,在教學中,進行思維方法訓練時一定要讓學生充分運用視覺、聽覺等多種感官參與活動,只有讓小學生眼、耳、手、口、腦都用起來,思維能力才能得以充分訓練。在思維訓練的同時,要注意強化求同、求異思維對比訓練。思維方法和思維能力的形成離不開思維活動,所以教學要創設間題情境,引導學生積極思維,進行深層次的參與。在思維活動中,讓學生學會思維的方法是小學數學教學的核心。
3.教給學生解決間題的方法解決問題對於學生來說是一種實踐活動,通過解題要讓學生學會分析問題和解決問題的方法。結合教學實際內容讓學生逐步把握對應、假設、轉化、化歸、集合等數學思考問題與解決問題的方法。教學要使學生通過數學學習學會將生活中、生產中的實際問題轉化為數學問題,從而通過數學問題的解決而解決實際問題。教師要注重引導學生在這方面實踐、探索,把課內學到的知識與課外實際結合起來,學會發展,從而掌握解決問題的有效方法。
4.教給學生閱讀數學課本的方法閱讀是獲得書本知識的基本方法。讓學生掌握閱讀數學課本的方法,就會增強學生學習數學的能力。教會學生閱讀數學課本是培養學生獨立學習的第一步,是養成良好數學閱讀習慣的關鍵一環。
小學數學教學指導學生閱讀課本.
一是指導學生課前預習。課前讓學生預習課本,對將要學習的新知識先自學,看哪些能看懂,哪些看不懂,課堂上帶著間題聽課。這里要注意的是,學生看書往往重結果輕過程,而我們應指導學生重點看過程。
二是課堂上看書。一般是新課之後,讓學生閱讀課本,給學生留有質疑的餘地。有時老師也可以有意識地創設情境,讓學生質疑,以培養學生的興趣。
三是課後閱讀課本。其目的是對所學的知識進行消化品味,如一些文字長或難記憶的概念,則需要學生加深理解。另外,課後學生還可以閱讀一些數學課外讀物』,以豐富自己釣知識。5.讓學生學會操作方法小學生數學概念、技能、算理、公式的形成都是藉助操作活動,通過對感性材料的對照、比較、分析、概括而獲取的。當然,操作活動在小學數學學習中佔有重要位置。正確、科學、有序、合理的操作,才能有效地促進學生對數學知識的掌握。操作要有很強的目的性,操作是手段,是過程,不是目的,不是單純為操作而操作。教師要善於將學生操作這一外化行為內化為學生的理性認識,進而加深學生對數學知識本質的理解,不斷形成和擴展他們的數學認知結構,提高他們的數學能力。6.使學生形成質疑問難、敢於提問的好習慣學起於思,思起於疑。教學中,教師要努力創設一個和諧寬松的環境,使學生敢於向老師提問,哪怕提出的問題不盡合理,甚至是異想天開的,教師也不要加以指責,而是要鼓勵他們多思、多問,保護他們好問的積極性和熱情。學生提出的問題,通過大家討論得到解決,會極大促進學生獲取數學知識的主動性和自覺性,從而培養他們獨立學習的能力。另外,教師要注意教給學生尋找問題的方法,使學生有問題可想,有問題可問。問題一般在這樣幾個環節尋找:一是在知識的生長點上找;_
二是在知識的「怎麼樣」上找;
三是在知識的「為什麼」上找;
四是在知識的歸納或分類上找;
五是在知識的作用方面找等等。在數學知識學習的過程中,處處都可能存在問題,只要廣大小學生不斷產生疑問,不斷解決疑問,積極動腦思考,這樣的學習才會是既生動活潑又積極主動的,這樣的學習效果才能是最好的。教學時,教師要特別注意學困生的發問,要鼓勵他們張開嘴巴,勇敢地發問。只有這樣,才能使所有小學生的數學素質普遍提高。7;教會學生整理知識脈絡,總結學習過程數學教學要重視數學聯系的教學,即老師在教學時要注意新舊知識的聯系、本學科知識與其他學科的聯系,這樣有利於數學知識形成一個清晰的網路,有利於學生組建良好的數學認知結構。
教學中,一方面要引導學生積極主動地參與學習的全過程;另一方面要引導學生回憶學習過程、總結學習過程。幫助學生把一些零散的知識納入一定的知識結構中去,以便發現規律,進而自覺地運用規律探索新知,進一步完善數學知識結構,增強其自主學習的精神和動力。8.教會學生進行數學交流數學交流就是要求學生通過聽覺、視覺、觸覺,以游戲、閱讀等方式來接受他人的數學思想,同時要求學生將自己的數學思想以動作的、直觀的、口頭的或書面的、兒童語言的或數學語言的形式表述出來,與大家一起進行交流。教會學生進行數學交流就是要教會學生「會聽」數學、「會讀」數學、「會寫」數學、」會思考「數學。教師要引導學生善於運用他們自己的語言表述數學對象,只有多交流、多討論,才能促進學生能力不斷提高,智力水平迅速發展。
二、數學學法指導的原則
1.自主性原則。學法指導應把調動學生主動性、積極性放在首位,注意發揮學生的自主性。學法指導的目的在於讓學生掌握科學的學習方法,學會利用掌握的方法去主動獲取新知乃至去創造新知。因此,教師在學法指導時,應善於激發學生的學習動機,調動他們的主觀能動性,讓他們自己去吸取、借鑒、完善知識體系,從而增強他們的學習能力。
2.滲透性原則。數學方法寓於數學知識之中,因此,教師應將學法指導寓於教學方法之中,教學既教知識又教方法,二者同步進行。
3.差異性原則。學生的數學基礎、個性特徵乃至學生情況等多種因素不盡相同。因此,在進行學法指導時,要區別對待,針對不同的對象進行有針對性的分類指導。
4.操作性原則。為了便於學習和掌握,教師提出的學習指導要求要具體明確,具有一定的操作J性。大凡學習指導要求太繁、過簡或籠統含糊都不利於學生學習和掌握。5.整體性原則。上面千條線,下面一根針。為—了發揮學習指導的整體效應,各個學科應從不同的角度、側面,不同的層次、渠道全面進行學習指導滲透。如各個學科應「以學定教」,通過導人—新授—練習—小結—作業等滲透習方法,通過講授—提問—板書—答疑等提示、點撥、總結學習方法。
三、數學學法指導的途徑
1.講授指導。講授指導就是教師將自己掌握的學習數學的方法直接地講授給學生,然後讓學生照法去實踐。
2.滲透指導。這是教師最常用的方法之一。這種方法是在教師教學的各個環節中,在傳授知識中指導方法,隨時滲透。讓學生既知道學習結果,又掌握學習過程,既懂學習步驟,又會學習技巧。
3.示範指導。學生掌握學法過程的規律告訴我們,有些學法僅靠教師的講解是不夠的,必要時教師要做示範,讓學生去效仿。
4.提示指導。這種指導方法要求教師在適當時機加以適當點撥、提示,學生便能抓住要點,迎刃而解。即在教師的點撥下,讓學生自己悟出道理,掌握方法。
5.交流指導。此指導就是教師組織指導學生總結、交流自己的學習經驗和方法,以達互相學習取長補短之目的。這種方法有很多好處,首先通過總結與交流能調動學生學習積極性;其次通過總結與交流使學生初步學會一些學習方法;再者通過總結交流,更容易推廣他們的經驗。
6.歸納指導。學生在學習活動中領悟到許多學習方法,但可能是不太系統的。因此教師要幫助分析、歸納、總結,使學生的學法得到鞏固。我們認為,數學學法的研究要與數學的教學研究有機結合,教法的研究有助於學法的研究,學法的研究能促進教法的研究。研究任何一種數學教學都必須與學法研究緊密聯系,同步展開,只有這樣,才能體現「教法」為主導、「學法」為主體的相互依賴的辯證關系。我們要變教為學,著眼點是以學生思維和學習的進程、知識的發生過程來設計教學。

Ⅸ 小學數學教學的教法和學法主要有哪些

19種小學數學教學方法總結
良好的方法能使我們更好地發揮運用天賦的才能,而拙劣的方法則可能阻礙才能的發揮.------[英]貝爾納
「數學為其他科學提供了語言、思想和方法」,「初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中和其他學科學習中的問題」.(小學數學課程標准)
數學思維方法分為兩種,形象思維方法和抽象思維方法.
小學數學要培養學生的形象思維能力,並在此基礎上,為發展抽象思維能力打下堅實的基礎.
一、形象思維方法
形象思維方法是指人們用形象思維來認識、解決問題的方法.它的思維基礎是具體形象,並從具體形象展開來的思維過程.
形象思維的主要手段是實物、圖形、表格和典型等形象材料.它的認識特點是以個別表現一般,始終保留著對事物的直觀性.它的思維過程表現為表象、類比、聯想、想像.它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象.它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力.
1、實物演示法
利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法.
這種方法可以使數學內容形象化,數量關系具體化.比如:數學中的相遇問題.通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向.再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多.
二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」.像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的.
特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握.長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎.
所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用.這樣可以有效地提高課堂教學效率,提升學生的學習成績.
績.
2、圖示法
藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法.
圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果.比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解.
在課堂教學當中,要多用圖示的方法來解決問題.有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段.
例1 把一根木頭鋸成3段需要24分鍾,鋸成6段需要多少分鍾?(圖略)
思維方法是:圖示法.
思維方向是:鋸幾次,每次用幾分鍾.
思路是:鋸3段鋸了幾次,每次用幾分鍾,鋸6段鋸了幾次,需要多少分鍾.
例2 判斷 等腰三角形中,點D是底邊BC的中點,圖甲的面積比圖乙的面積大,圖甲的周長比圖乙的周長長.(圖略)
思維方法:圖示法.
思維方向:先比較面積,再比較周長.
思路:作條輔助線.圖甲占的面積大,圖乙所佔面積小,所以「圖甲的面積比圖乙的面積大」是正確的.線段AD比曲線AD短,所以「圖甲的周長比圖乙的周長長」是錯誤的.
3、列表法
運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法.列表法清晰明了,便於分析比較、提示規律,也有利於記憶.它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關.比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」.
用列表法解決傳統數學問題:雞兔同籠問題.製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向.
4、探索法
按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法.我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來.」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈.「學習要以探究為核心」,是新課程的基本理念之一.人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試.
第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究.例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣.教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離.學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」.
第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律.
例3 找規律填數.
(1)1、4、 、10、13、 、19;
(2)2、8、18、32、 、72、 .
第三,獨立探究與合作探究結合.獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花.
小學數學教學活動中,教師應盡量創設讓學生去探究的情景,創造讓學生去探究的機會,鼓勵有探究精神和習慣的學生.
5、觀察法
通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法.巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」
小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系.
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數的位置,積不變.
「觀察」的要求:
第一、觀察要細致、准確.
例4 找出下列各題錯在哪裡,並改正.
(1)25×16=25×(4×4)=(25×4)×(25×4);
(2)18×36+18×64=(18+18)×(36+64)
例5 直接寫出下列各題的得數:
(1)3.6+6.4 (2)3.6+6.04
(3)125×57×0.04 (4)(351-37-13)÷5
第二、科學觀察.科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象.比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念.
第三, 觀察必定與思考結合.
例6

7
10
6

18
這是一年級下學期的一道思考題,如果只觀察不思考,這道題目讓干什麼就不知道.
6、典型法
針對題目去聯想已經解過的典型問題的解題規律,從而找出解題思路的方法叫做典型法.典型是相對於普遍而言的.解決數學問題,有些需要用一般方法,有些則需要用特殊(典型)方法.比如,歸一、倍比和歸總演算法、行程、工程、消同求異、平均數等.
運用典型法必須注意:
(1)要掌握典型材料的關鍵及規律.
例7 已知爸爸比兒子大30歲,爸爸今年的年齡正好是兒子的7倍.爸爸、兒子今年分別是多少歲?關鍵點在:爸爸比兒子大30歲,爸爸的年齡比兒子多幾倍.典型題都有典型解法,要想真正學好數學,即要理解和掌握一般思路和解法,還要學會典型解法.
(2)熟悉典型材料,並能敏捷地聯想到所適用的典型,從而確定所需要的解題方法.
例8 見到「某城市有一條公共汽車線路,長16500米,平均每隔500米設一個車站.這條線路需要設多少個車站?」這樣題目,就應該聯想到上面所講到的「鋸木頭用多少分鍾」的典型問題.
(3)典型和技巧相聯系.
例9 甲乙兩個工程隊共有82人,如果從乙隊調8人到甲隊,兩隊人數正好相等.甲乙兩隊原來各有多少人?這題目的技巧:調前、調後兩隊總人數沒變.先算調後各隊人數,再算原來各隊人數.
7、放縮法
通過對被研究對象的放縮估計來解決問題的方法叫做放縮法.放縮法靈活、巧妙,但有賴於知識的拓展能力及其想像能力.
例16 求12和9的最小公倍數.
求兩個數的最小公倍數一般的方法是「短除式」方法,它是根據這兩個數的質因數情況來求出它們的最小公倍數的.但也有兩個典型方法:一是「如果兩個數是互質數,那麼這兩個數的最小公倍數就是它們的乘積」;二是「如果大數是小數的倍數,那麼這兩個數的最小公倍數就是大數」.現在我們根據典型方法二,進行擴展運用,放大「大數」來求12和9的最小公倍數.
12不是9的倍數,就把它放大2倍,得24,仍然不是9的倍數,放大3倍,得36,36是9的倍數,那麼,12和9的最小公倍數就是36.這種方法的關鍵點在於,如果大數不是小數的倍數,就把大數翻倍,但一定從2倍開始,如果一下子擴大6倍,得數是它們的公倍數,而不是最小的了.
例17 期末考試,小剛的語文成績和英語成績的和是197分;語文和數學成績加起來是199分;數學和英語成績加起來是196分.想一想,小剛的哪科成績最高?你能算出小剛的各科成績嗎?
思路一:「放大」.通過觀察發現,語、數、外三科成績在題目中各出現兩次,我們求197+199+196的和,這個和是「語數外成績的2倍」,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績.
思路二:「縮小」.我們用語數成績的和減去語外的成績,199-197=2(分),這是數學減英語成績的差.數學和英語的和是196分,再求數學的分數就不難了.
放縮法有時運用在估算和驗算上.
例18 檢驗下列計算結果是否正確?
(1)18.7×6.9=137.3; (2)17485÷6.6=3609.
對於(1)用總體估計,放大至19×7=133,估計得數要小於133,所以本題結果錯誤.對於(2)用最高位估計,把17看作18,把6.6看作6,18÷6=3,顯然答數的最高位不會是3,故本題結果也不正確.
例19 把雞和兔放在一起,共有48個頭,114隻足,問雞、兔各有幾只.
這是一道雞兔同籠的典型問題,我們也用放縮法,不妨把雞和兔的足數縮小2倍,那麼,雞的足數和它的頭數一樣,而兔的足數是它的只數的2倍.所以,總的足數縮小2倍後,雞和兔的總足數與它們的總只數相差數就是兔的只數.
8、驗證法
你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質.
驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功.應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣.
(1)用不同的方法驗證.教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算.
(2)代入檢驗.解方程的結果正確嗎?用代入法,看等號兩邊是否相等.還可以把結果當條件進行逆向推算.
(3)是否符合實際.「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中.比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)
按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去.教學中,常識性的東西予以重視.做衣服套數的近似計算要用「去尾法」.
(4)驗證的動力在猜想和質疑.牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現.」「猜」也是解決問題的一種重要策略.可以開拓學生的思維、激發「我要學」的願望.為了避免瞎猜,一定學會驗證.驗證猜測結果是否正確,是否符合要求.如不符合要求,及時調整猜想,直到解決問題.
二、抽象思維方法
運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維.
抽象思維又分為:形式思維和辯證思維.客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式.形式思維是辯證思維的基礎.
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理.
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律.
小學數學要培養學生初步的抽象思維能力,重點突出在:(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性.(2)思維方法上,應該學會有條有理,有根有據地思考.(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密.(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理.
9、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法.根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法.
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識.
例20、三個連續自然數的和是18,則這三個自然數從小到大分別是多少?
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數.
例21、判斷:能被2除盡的數一定是偶數.
這里要對照「除盡」和「偶數」這兩個數學概念.只有這兩個概念全理解了,才能做出正確判斷.
10、公式法
運用定律、公式、規則、法則來解決問題的方法.它體現的是由一般到特殊的演繹思維.公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法.但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用.
例22、 計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運用乘法分配律
=59×50 …………運用加法計演算法則
=(60-1) ×50 …………運用數的組成規則
=60×50-1×50 …………運用乘法分配律
=3000-50 …………運用乘法計演算法則
=2950 …………運用減法計演算法則
11、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法.
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整.
(2)找聯系與區別,這是比較的實質.
(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件.
(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出.
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯.
例23、填空:0.75的最高位是( ),這個數小數部分的最高位是( );十分位的數4與十位上的數4相比,它們的( )
相同,( )不同,前者比後者小了( ).
這道題的意圖就是要對「一個數的最高位和小數部分的最高位的區別」,還有「數位和數值」的區別等.
例23、六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗.六年級有多少學生?
這是兩種方案的比較.相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣.
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化.
找解決思路(方法):每人多種7-5=2(棵),那麼,全班就多種了75+15=90(棵),全班人數為90÷2=45(人).
12、分類法
俗語:物以類聚,人以群分.
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法.分類是以比較為基礎的.依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類.
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉.
例24、 自然數按約數的個數來分,可分成幾類?
答:可分為三類.(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個.
13、分析法
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的一種思維方法叫做分析法.
依據:總體都是由部分構成的.
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路.
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是「由果溯因」.分析法也叫逆推法.常用「枝形圖」進行圖解思路.
例25、玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件.問平均每天超過計劃多少件?
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件.計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來.要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知.
枝形圖:(略)
14、綜合法
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法.
用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法.這種方法適用於已知條件較少,數量關系比較簡單的數學題.
例26、兩個質數,它們的差是小於30的合數,它們的和即是11的倍數又是小於50的偶數.寫出適合上面條件的各組數.
思路:11的倍數同時小於50的偶數有22和44.
兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2.
和是22的兩個質數有:3和19,5和17.它們的差都是小於30的合數嗎?
和是44的兩個質數有:3和41,7和37,13和31.它們的差是小於30的合數嗎?
這就是綜合法的思路.
15、方程法
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式).列方程是一個抽象概括的過程,解方程是一個演繹推導的過程.方程法最大的特點是把未知數等同於已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足.有利於由已知向未知的轉化,從而提高了解題的效率和正確率.
例27、一個數擴大3倍後再增加100,然後縮小2倍後再減去36,得50.求這個數.
例28、一桶油,第一次用去40%,第二次比第一次多用10千克,還剩餘6千克.這桶油重多少千克?
這兩題用方程解就比較容易.
16、參數法
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的一種方法叫做參數法.參數又叫輔助未知數,也稱中間變數.參數法是方程法延伸、拓展的產物.
例29、汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?
上下山的平均速度不能用上下山的速度和除以2.而應該用上下山的路程÷2.
例30、一項工作,甲單獨做要4天完成,乙單獨做要5天完成.兩人合做要多少天完成?
其實,把總工作量看作「1」,這個「1」就是參數,如果把總工作量看作「2、3、4……」都可以,只不過看作「1」運算最方便.
17、排除法
排除對立的結果叫做排除法.
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果.這種方法也叫淘汰法、篩選法或反證法.這是一種不可缺少的形式思維方法.
例31、為什麼說除2外,所有質數都是奇數?
這就要用反證法:比2大的所有自然數不是質數就是合數.假設:比2大的質數有偶數,那麼,這個偶數一定能被2整除,也就是說它一定有約數2.一個數的約數除了1和它本身外,還有別的約數(約數2),這個數一定是合數而不是質數.這和原來假定是質數對立(矛盾).所以,原來假設錯誤.
例32、判斷:(1)同一平面上兩條直線不平行,就一定相交.(錯)
(2)分數的分子和分母同乘以或同除以一個相同的數,分數大小不變.(錯)
18、特例法
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法.特例法的邏輯原理是:事物的一般性存在於特殊性之中.
例33、大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的( )倍,大圓面積是小圓面積的( )倍.
可以取小圓半徑為1,那麼大圓半徑就是2.計算一下,就能得出正確結果.
例33、 正方形的面積和邊長成正比例嗎?
如果正方形的邊長為a,面積為s . 那麼,s:a=a (比值不定)
所以,正方形的面積和邊長不成正比例.
19、化歸法
通過某種轉化過程,把問題歸結到一類典型問題來解題的方法叫做化歸法.化歸是知識遷移的重要途徑,也是擴展、深化認知的首要步驟.化歸法的邏輯原理是,事物之間是普遍聯系的.化歸法是一種常用的辯證思維方法.
例34、某制葯廠生產一批防「非典」葯,原計劃25人14天完成,由於急需,要提前4天完成,需要增加多少人?
這就需要在考慮問題時,把「總工作日」化歸為「總工作量」.
例35、超市運來馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯佔25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運來西紅柿多少千克?
需要把「西紅柿和豇豆的重量比4:5」化歸為「各占總重量的百分之幾」,也就是把比例應用題化歸為分數應用題.

Ⅹ 小學數學教材教法內容有哪些

《數學》的基本理念?答:
1.義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:
--人人學有價值的數學;
--人人都能獲得必需的數學;
--不同的人在數學上得到不同的發展。
2.數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎;數學在提高人的推理能力、抽象能力、想像力和創造力等方面有著獨特的作用;數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。
3.學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。內容的呈現應採用不同的表達方式,以滿足多樣化的學習需求。有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。
4.數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法閉攜姿,獲得廣泛的數學活動經驗。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。
5.評價的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學;應建立評價目標多元、評價方法多樣的評轎絕價體系。對數隱歲學學習的評價要關注學生學習的結果,更要關注他們學習的過程;要關注學生數學學習的水平,更要關注他們在數學活動中所表現出來的情感與態度,幫助學生認識自我,建立信心。
6.現代信息技術的發展對數學教育的價值、目標、內容以及學與教的方式產生了重大的影響。數學課程的設計與實施應重視運用現代信息技術,特別要充分考慮計算器、計算機對數學學習內容和方式的影響,大力開發並向學生提供更為豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有更多的精力投入到現實的、探索性的數學活動中去。
3、課程內容的學習,強調學生的數學活動,發展學生的數感、符號感、空間觀念、統計觀念,以及應用意識與推理能力。其中數感、空間觀念主要表現在?
答:數感主要表現在:理解數的意義;能用多種方法來表示數;能在具體的情境中把握數的相對大小關系;能用數來表達和交流信息;能為解決問題而選擇適當的演算法;能估計運算的結果,並對結果的合理性作出解釋。
空間觀念主要表現在:能由實物的形狀想像出幾何圖形,由幾何圖形想像出實物的形狀,進行幾何體與其三視圖、展開圖之間的轉化;能根據條件做出立體模型或畫出圖形;能從較復雜的圖形中分解出基本的圖形,並能分析其中的基本元素及其關系;能描述實物或幾何圖形的運動和變化;能採用適當的方式描述物體間的位置關系;能運用圖形形象地描述問題,利用直觀來進行思考。

閱讀全文

與數學教科書編寫體現了什麼教學方法相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1691
西安瑞禧生物科技有限公司怎麼樣 瀏覽:947
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1641
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050