① 「數學廣角」有什麼內容
「數學廣角」是義務教育課程標准實驗教科書從二年級上冊開始新增設的一個單元,是新教材在向學生滲透數學思想方法方面做出的新的物州嘗試。
一、雞兔同籠
雞兔同籠,是中國古代著名趣題之一,記載於《孫子算經》之中。雞兔同籠問題,是小學奧數的常見題型。許多小學算術應用題都可以轉化成這類問題,或者用解它的典型解法--"假設法"來求解。因此很有必要學會它的解法和思路。通常是假設法比較簡單易懂一點。
二、抽屜原理
桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發現至少會有一個抽屜裡面至少放兩個蘋果。這一現象就是我們所說的「抽屜原理」。 抽屜原理的一般含義為:「如果每個抽屜代表一個集合,每一個蘋果就可以代表一個元素,假如有n+1個元素放到n個集合中去,其中必定有一個集合里至少有兩個元素。」 抽屜原理有時也被稱為鴿巢原理。它是組合數學中一個重要的原理。
三、分類
分類,是指按照種類、等級或性質分別歸類。
四、找規律
找規律是小學數學和中學數學教學的基本技能,目的是讓學生發現、經歷、探究圖形和數字簡單的排列規律,通過比較,從而理解並掌握找規律的方法,培養學生初步的觀察、操作、推理能力。
五、簡單的排列組合
排列和組合的思想方法不僅應用廣泛,而且是學生學習概率統計的知識基礎,同時也是發展學生抽象能力和邏輯思維能力的好素材,在滲透數學思想方法方面做了一些努力和探索,把重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來。
六、邏輯推理
所謂演繹推理,就是從一般性的前提出發,通過推導即「演繹」,得出具體陳述或個別結論的過程。演繹推理的邏輯形式對於理性的重要意義在於,它對人的思維保持嚴密性、一貫性有著不可替代的校正作用。
七、重疊問題
日常生活或數學問題中,在把一些數據按照某個標准分類時,常常出現其中的一部分數據同時屬於兩種或兩種以上不同的類別,這樣在計算總數時就會出現重復計算的情況,這類問題就叫做重疊問題,解答重疊問題常用方法是:先不考慮重疊的情況,把有重復包含的幾個計數部分加起來,再從它們的和中排除重復部分元素的個數,使得計算的結果既無遺漏又不重復。這個原理叫做包含與排除原理,也叫容斥原理。
八、烙餅問題
通過討論烙餅時如何合理安排操作最節省時間,讓學生體會在解決問題中優化思想的利用。因為五年級的學生已經有了一定的解決問題的能力和基礎,可以說,在日常的學習生數搜活中,學生能很容易找到解決問題的方法,而且還會找到解決問題的不同策略,但這里的關鍵是讓學生理解薯螞歷優化的思想,形成從多種方案中尋找最優方案的意識,提高學生的解決問題的能力。
九、植樹問題
為使其更直觀,用圖示法來說明。樹用點來表示,植樹的沿線用線來表示,這樣就把植樹問題轉化為一條非封閉或封閉的線上的「點數」與相鄰兩點間的線的段數之間的關系問題。
十、找次品
現實生活生產中的「次品」有許多種不同的情況,有的是外觀與合格品不同,有的是所用材料不符合標准等。這節課的學習中要找的次品是外觀與合格品完全相同,只是質量有所差異,且事先已經知道次品比合格品輕(或重),另外在所有待測物品中只有唯一的一個次品。
② 小學數學教學中如何處理數學廣角
把握目標 突出主體 有效提升
——淺談《數學廣角》的教學
[摘要]數學廣角教學的關鍵是對學生進行數學思想方法的滲透,目的是培養學生的思維及解決實際問題的能力。在教學中把握准教學目標,注重學生的主動建構,注重學生的自主探索,注重學生的交流討論,讓學生經歷數學知識的形成過程,突出主體,巧用素材,有效提升,為學生的終身發展奠定基礎。
[關鍵詞] 目標 主體 提升
「數學廣角」是人教版小學數學實驗教材新增加的板塊,這塊新內容許多執教教師都感到比較迷茫,迷茫於編者的意圖,迷茫於教學目標的把握,迷茫於教學方法的選擇,迷茫於內容的處理,迷茫於過程的展開,迷茫於……。再加上從總體上來說,《數學廣角》的內容不列入期末考試的范疇,所以有的教師就蜻蜓點水,一帶而過,有的教師又因為學校要進行競賽,又上成奧數課。《數學廣角》究竟如何去教學呢?
一、恰當要求,把握目標
教學目標是課堂教學的靈魂,它既是教學的出發點,又是教學的歸宿。因此,教學目標的制定是否恰當,直接決定著教學過程中目標的達成度,也將直接決定一堂課的教學效果。教參上也說每一冊數學廣角單元的安排,主要都是通過簡單的事例滲透一些重要的數學思想方法,或者介紹一些比較著名的數學問題,讓學生在解決這些問題的過程中能主動嘗試從數學的角度運用所學知識和方法尋找解決問題的策略,培養學生解決實際問題的實踐經驗和能力。最重要的目的是讓學生通過接觸這些重要的數學思想方法,經歷猜想、實驗、推理等數學探索的過程,激發學生對數學的好奇心和求知慾,增強學生學習數學的興趣。根據這一些,我們既不能拔高要求,脫離軌道,也不能降低要求,敷衍了事。
在一次鄉鎮一級教研活動中,有一位教師在教學二上的排列組合時,她是這樣教學的:先通過老師與一個學生的握手,需要握一次;然後小組合作,試一試3人要握幾次,通過老師的引導得出3個人握手的次數可以用算式2+1=3來計算,4個人的握手先通過小組合作,在指名上來表演,又得出可以用算式3+2+1=6表示;5個人呢,引導學生可以用自己喜歡的數字、圖形、字母等表示人,再用連線表示握手的次數,又得出5個人的握手可以用4+3+2+1=10表示;接下來通過找規律得出6個人的握手次數是5+4+3+2+1=15,並進行了驗證;根據這樣的規律,那7個人、8個人、全班呢?通過引導,學生列出了相應的式子。最後老師總結:今天學的就是《握手中的數學問題》。她這節課把教學目標定為讓學生通過觀察、操作、討論等活動,建立握手中的數學問題的模型,然後運用這個模型來應用。這樣的目標和教學設計就拔高了教學要求,因為本節課是二年級上冊的內容,學生第一次接觸數學廣角,這部分內容本身對於低年級學生來說就比較抽象,不應該象上面那樣上成握手中的數學問題,使課堂只成為尖子生的課堂,所以這節課的目標應定為:使學生通過觀察、猜測、比較、實驗等活動,找出最簡單事物的排列數和組合數;初步培養學生有順序地、全面地思考問題的意識;使學生感受數學與生活的密切聯系,激發學生學習探索數學的濃厚興趣。根據這個目標,可以把教學設計改為:把各項教學內容全部貫穿於一個游戲活動當中,把擺數、握手、搭配衣服、打乒乓球,買練習本等學習內容貫穿整節課,使教材在呈現方式上變得生動、有趣,並富有濃濃生活氣息;在內容上也有較強的層次性和邏輯性,使學生感到學數學就好像是在做游戲,增強了全班學生的參與意識,提高了學生學習的積極性,較好地完成教學目標。
二、突出主體,體現價值
1、關注學習過程,突出思想方法
數學廣角體現了新課程的一種理念「重要的思想方法的滲透」,在滲透的過程中,切忌片面強調機械記憶、模仿以及復雜技巧。例如在教學三上的排列組合時,有的教師創設了搭配穿衣服的情境後,透過小組討論、演示搭配過程、以及簡單的連線方法後,老師就會問:「有沒有更簡單的方法?」如果學生還沒有列出算式來,老師還會問:「上裝的件數和下裝的件數,與有多少種搭配方法有什麼關系?」迫使學生得出計算的方法,才肯罷休,繼續下面的環節。不難看出,這樣較快地提煉方法,會使學習成為結果的記憶和套用,知識發生和發展過程中寶貴的教育資源就不能被充分開發利用,這樣只關注結果的教學,哪有學生的主體地位?
有一位教研員他是這樣設計的,同樣創設了搭配衣服的數學情境,提問:「到底有多少中不同的搭配方法呢?你有什麼好方法讓大家清楚地知道你的種數呢?」接下來,請學生介紹,並引導評價,體驗有序思考的好處,然後再提問:「用什麼方法巧妙地紀錄搭配的結果,比一比,誰的方法又對又快又清楚?」學生嘗試用符號來表達自己的想法,有的用文字表示,有的用圖形表示,有的用數字表示,有的用字母表示,還有的用算式表示……「它們有什麼共同的特點?」「有序!」這樣學生有順序地、全面地思考問題的意識得到了加強,落實課程標准中提出的要求──「在解決問題的過程中,使學生能進行簡單的、有條理的思考」。同時,學生通過用圖片擺到抽象化的符號,其思考過程經歷了從實物到抽象的過程,學生數學化的思考過程也非常明顯,教學中教師並不急於提煉方法、得出結論,而是用較重的筆墨充分展開過程,這樣重在滲透思想方法,落實數學思考,關注學習過程的教學方法是數學廣角教學的首選。
2、夯實學習基礎,促進方法滲透
數學廣角的教學,不但要滲透數學的思想方法,還要使學生會用這些思想方法解決一些簡單的實際生活問題和數學問題,從而培養學生解決生活中實際問題的能力。上一學期,我對四下的《植樹問題》這一課進行認真地備課:既考慮到情境的創設如何培養學生的興趣,貼近學生的生活;也考慮到教學時如何以學生為主體,滲透方法,自主建構。可是在實際的教學過程中,在「種樹」時還是躍躍欲試的學生們到「應用規律」 時一個個都像在猜謎,加1?減1?還是不加不減?勉強參與的只是那幾個在校外學奧數的學生。看來這樣的設計無法顧及全體學生的發展,沒有了學生的主體參與,還體現什麼價值?反思整節課:因為課前沒有較好地了解學生的學習起點,小組合作也只停留在表面,急於得出植樹問題的三種情況,這樣只重結果,學生似懂非懂,又怎麼去應用規律呢?在反思中,我找到了症結,改變了原來的教學設計,首先創設情境後先獨立思考,再讓學生在小組內充分討論,有的學生畫草圖、有的學生畫線段圖、還有的學生直接列算式,然後我採用反問的形式以及課件的巧妙演示,數形結合,滲透數學學習方法,給學生提供多次體驗的機會,讓學生有夯實的學習基礎,有效地促進數學思想方法的滲透,這樣為下面的解決實際問題提供了一根將「發現規律」與「運用規律」鏈接起來的拐杖,使學生永遠站在主體的位置。
三、巧用素材,有效提升
練習在數學教學中佔有特殊地位,是課堂教學的重要環節。數學廣角的鞏固練習創設了許多現實的、學生感興趣的情境作為學習的素材。有的教師如果是平時上課他會按教材一題一題講解,不考慮素材安排的目的;如果是上公開課,因為數學廣角的練習題量也不多,他又會自己創設出好多的素材來鞏固,究竟如何去巧用素材,使數學知識有效提升呢?
例如三上的《組合》這一課,教材上安排了組數、早餐搭配、走路中的數學問題、拍照等,這些豐富有趣的情境牢牢的吸引著學生,如果在教學時只是讓學生「用數字卡片擺一擺」、「用線在書上連一連飲料與點心的搭配」、「自己用筆畫一畫從兒童樂園到百鳥園的路線」或「用線連一連一共拍了幾張照片」,這些問題情境的設計與展開是平面的,除了情境的不同,要求上並沒有提升,始終停留於具體操作層面,缺少數學化的過程。所以我們在教學時要注意每一個問題情境應有目標重心,組數問題要突出「有序思考」,把點心搭配從「二三搭配」拓展為「三三搭配」,既是對前面思想方法的鞏固應用,又能起到舉一反三的作用,遊玩路線問題則側重於「符號思想」的應用,讓學生思考「如何可以更清楚地表達路線」,拍照問題則可以拓展為如果我們全班同學每個人都想單獨和聰聰、明明各合一張影,一共要照多少張?只有這樣發揮教材的編排作用,挖掘每個素材的獨特功能,才能使學生的各種技能有效提升。
總之,數學廣角的教學要體現「以學生為本」,突出主體,把握准目標,讓學生經歷數學知識的形成過程,把數學思想方法貫穿始終,體現數學的價值,增強應用數學的意識,為學生的終身發展奠定基礎。
讓我們每一位教師都在數學廣角這一畫卷上描上最美麗的一筆。
③ 小學數學廣角怎麼教
一、分析教材,用好教材
分析和研究教材是每一個教師所做的日常工作。我們要對人教版數學教材中的「數學廣角」單元的內容至少通讀一遍,對教材編寫的指導思想、編排意圖等做到心中有數。教材是可以超越、可以選擇的。在對教材的處理方法上,教師要善於結合本地的實際情況對教材內容進行修正、開發和創造。
二、認真體會「數學廣角」編排的意義
「數學廣角」安排了邏輯推理、等量代換等一些探索純數學問題的內容,逐步向學生滲透一些重要的數學思想方法,把數學思想方法以解決學生容易接受的生活問題的形式,通過觀察、操作、實驗、猜測、推理與交流等活動,初步感受數學思想方法的奇妙與作用,受到數學思維的訓練,逐步形成有序地、嚴密地思考問題的意識,同時使他們逐步形成探索數學問題的興趣與慾望,發現、欣賞數學美的意識。
三、准確定位「數學廣角」教學目標和要求
「數學廣角」的教學目標的定位上與我們的數學常規課和數學實踐活動有所不同,不能一味地提高要求,把「數學廣角」課上成奧數課。不能一味地追求解決問題的結果,甚至一節課下來只停留在直觀的實驗操作,而忽視了從直觀上升上抽象的過程,從而也就忽視了數學思想方法的感悟,出現了目標定位偏低。在教學目標的定位上應體現以學生為本的層次性。學生學習起點的不同要求我們在教學中就不能同等相待。
四、注重課前備好課,做好充分准備
熟讀教材和教學參考書,明確教學重點、難點;書寫教案:是課堂教學實施方案,確定教學重點、難點、時間分配,教學方法,硬體的使用,學生的活動等。是重要一環;准備硬體:儀器設備、教具,是重要的必備品,包括電化教學設備,藉助多媒體優化教學過程。
④ 二年級數學廣角搭配規律口訣是什麼
二年級數學廣角搭配規律口訣如下:
定位法中的「個位」定位、「十位」定位、交換法。例如用1、2、3組成兩位數,每個兩位數的十位數和個位數不能一樣,定位法中的「個位」定位、「十位」定位、交換法。
「個位」定位法:把1定位在個位:21、31;把2定位在個位:12、32;把3定位在個位:13、23。
「十位」定位法:把1定位在十位:12、13;把2定位在十位:21、23;把3定位在十位:31、32。
交換法:12交換成21;13交換成31;23交換成32。
因此,從上面的方法可以看出,1、2和3可以組成6個兩位數。
「定位法」:首先,把「孫」字定位:孫行者、孫者行;其次,把「行」字定位:行者孫、行孫者;最後,把「者:字定位:者孫行、者行孫。