Ⅰ 初二上課本數學書第82頁第5題
證明:∵CE∥DA,∴∠A=∠CEB, ∵基拆∠A=∠B, ∴∠CEB=∠B, ∴△CEB是等腰三角形。 搏旦棗 遲飢 附圖如:
Ⅱ 八年級數學課本知識點
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些 八年級 數學的知識點,希望對大家有所幫助。
八年級上冊數學知識點 總結 歸納
一、全等形
1、定義:能夠完全重合的兩個圖形叫做全等圖形,簡稱全等形。
2、一個圖形經過翻折、平移和旋轉等變換後所得到的圖形一定與原圖形全等。反之,兩個全等的圖形經過上述變換後一定能夠互相重合。
二、全等多邊形
1、定義:能夠完全重合的多邊形叫做全等多邊形。互相重合的點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
2、性質:
(1)全等多邊形的對應邊相等,對應角相等。
(2)全等多邊形的面積相等。
三、全等三角形
1、全等符號:≌。如圖,不是為:△ABC≌△ABC。讀作:三角形ABC全等於三角形ABC。
2、全等三角形的判定定理:
(1)有兩邊和它們的夾角對應相等的兩三角形全等。(即SAS,邊角邊);
(2)有兩角和它們的夾邊對應相等的兩三角形全等。(即ASA,角邊角)
(3)有兩角和其中一角的對邊對應相等的兩三角形全等。(即AAS,角角邊)
(4)有三邊對應相等的兩三角形全等。(即SSS,邊邊邊)
(5)有斜邊和一條直角邊對應相等的兩直角三角形全等。(即HL,斜邊直角邊)
3、全等三角形的性質:
(1)全等三角形的對應邊相等、對應角相等;
(2)全等三角形的周長相等、面積相等;
(3)全等三角形對應邊上的中線、高,對應角的平分線都相等。
4、全等三角形的作用:
(1)用於直接證明線段相等,角相等。
(2)用於證明直線的平行關系、垂直關系等。
(3)用於測量人不能的到達的路程的長短等。
(4)用於間接證明特殊的圖形。(如證明等腰三角形、等邊三角形、平行四邊形、矩形、菱形、正方形和梯形等)。
(5)用於解決有關等積等問題。
初二上數學知識點
同類項的概念:喊改世所含字母相同,並且相同字母的指數也相同的項叫做同類項。幾個常數項也叫同類項。
判斷幾個單項式或項,是否是同類項的兩個標准:
①所含字母相同。②相同字母的次數也相同。
判斷同類項時與系數無關,與字母排列的順序也無關。
合並同類項的概念:把多項式中的同類項合並成一項叫做合並同類項。
合並同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
合並同類項步驟:
⑴.准確的找出同類項。
⑵.逆用分配律,把同類項的系數加在一起(用小括弧),字母和字母的指數不變。
⑶.寫出合並後的結果。
合並同類項時注意:
(1)如果兩個同類項的系數互為相反數,合並同類項後,結果為0。
(2)不要漏掉不能合並的項。
(3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
(4)不是同類項千萬不能進行合並。
初二上冊數學一次函數知識點總結
一、函數:
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一殲巧個y值,那麼我們稱y是x的函數,其中x是自變數,y是因變數。
二、自變數取值范圍
使函數有意義的自變數的取值的全體,叫做自變數的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
三、函數的三種表示法及其優缺點
(1)關系式(解析)法
兩個變數間的函數關系,有時可以用一個含有這兩個變數及數字運算符號的等式表示,鄭肢這種表示法叫做關系式(解析)法。
(2)列表法
把自變數x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數關系的方法叫做圖象法。
四、由函數關系式畫其圖像的一般步驟
(1)列表:列表給出自變數與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,若兩個變數x,y間的關系可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。
特別地,當一次函數中的b=0時(即)(k為常數,k0),稱y是x的正比例函數。
2、一次函數的圖像:所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特徵:
一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。
八年級數學課本知識點相關 文章 :
★ 八年級上冊數學課本的知識點歸納
★ 人教版八年級上冊數學課本知識點歸納
★ 人教版八年級數學上冊知識點總結
★ 八年級下冊數學知識點整理
★ 人教版八年級上冊數學課本知識點歸納(2)
★ 八年級數學知識點整理歸納
★ 八年級數學上冊知識點總結人教版
★ 八年級下冊數學書知識點
★ 新人教版八年級數學上冊知識點
★ 初二數學上冊知識點總結
Ⅲ 初二數學
數學是考試的重點考察科目,數學知識的積累和解題 方法 的掌握,需要科學有效的 復習方法 ,同時需要持之以恆的堅持。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。 初二數學下冊知識點歸納 第一章分式 1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變 2分式的運算 (1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。 (2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減 3整數指數冪的加減乘除法 4分式方程及其解法 第二章反比例函數 1反比例函數的表達式、圖像、性質 圖像:雙曲線 表達式:y=k/x(k不為0) 性質:兩支的增減性相同; 2反比例函數在實際問題中的應用 第三章勾股定理 1勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的平方 2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形。 第四章四邊形 1平行四邊形 性質:對邊相等;對角相等;對角線互相平分。 判定:兩組對邊分別相等的四邊形是平行四邊形; 兩組對角分別相等的四邊形是平行四邊形; 對角線互相平分的四邊形是平行四邊形; 一組對邊平行而且相等的四邊形是平行四邊形。 推論:三角形的中位線平行第三邊,並且等於第三邊的一半。 2特殊的平行四邊形:矩形、菱形、正方形 (1)矩形 性質:矩形的四個角都是直角; 矩形的對角線相等; 矩形具有平行四邊形的所有性質 判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形; 推論:直角三角形斜邊的中線等於斜邊的一扒信半。 (2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質 判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。 (3)正方形:既是弊姿一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。 3梯形:直角梯形和等腰梯形 等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。 八年級 數學知識點 零指數冪與負整指數冪 重點:冪的性質(指數為全租此絕體整數)並會用於計算以及用科學記數法表示一些絕對值較小的數 難點:理解和應用整數指數冪的性質。 一、復習練習: 1、;=;=,=,=。 2、不用計算器計算:÷(—2)2—2-1+ 二、指數的范圍擴大到了全體整數. 1、探索 現在,我們已經引進了零指數冪和負整數冪,指數的范圍已經擴大到了全體整數.那麼,在「冪的運算」中所學的冪的性質是否還成立呢?與同學們討論並交流一下,判斷下列式子是否成立. (1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2 2、概括:指數的范圍已經擴大到了全體整數後,冪的運演算法則仍然成立。 3、例1計算(2mn2)-3(mn-2)-5並且把結果化為只含有正整數指數冪的形式。 解:原式=2-3m-3n-6×m-5n10=m-8n4= 4練習:計算下列各式,並且把結果化為只含有正整數指數冪的形式: (1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3. 三、科學記數法 1、回憶:在之前的學習中,我們曾用科學記數法表示一些絕對值較大的數,即利用10的正整數次冪,把一個絕對值大於10的數表示成a×10n的形式,其中n是正整數,1≤∣a∣<10.例如,864000可以寫成8.64×105. 2、類似地,我們可以利用10的負整數次冪,用科學記數法表示一些絕對值較小的數,即將它們表示成a×10-n的形式,其中n是正整數,1≤∣a∣<10. 3、探索: 10-1=0.1 10-2= 10-3= 10-4= 10-5= 歸納:10-n= 例如,上面例2(2)中的0.000021可以表示成2.1×10-5. 4、例2、一個納米粒子的直徑是35納米,它等於多少米?請用科學記數法表示. 分析我們知道:1納米=米.由=10-9可知,1納米=10-9米. 所以35納米=35×10-9米. 而35×10-9=(3.5×10)×10-9 =35×101+(-9)=3.5×10-8, 所以這個納米粒子的直徑為3.5×10-8米. 5、練習 ①用科學記數法表示: (1)0.00003;(2)-0.;(3)0.;(4). ②用科學記數法填空: (1)1秒是1微秒的倍,則1微秒=_________秒; (2)1毫克=_________千克; (3)1微米=_________米;(4)1納米=_________微米; (5)1平方厘米=_________平方米;(6)1毫升=_________立方米. 初二數學復習方法 按部就班 數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。 強調理解 概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。 基本訓練 學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。 重視錯誤 訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。 數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。 平時的數學學習: ○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完. ○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」. ○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課. ○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的 總結 和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.
初二數學基礎知識點歸納相關 文章 : ★ 初中數學基礎知識整理歸納 ★ 初二數學知識點歸納整理 ★ 初中數學基礎知識點歸納總結 ★ 初二數學基礎知識點 ★ 初二數學知識點歸納 ★ 初二數學知識點復習整理 ★ 初二數學知識點歸納梳理 ★ 初二數學基礎知識點2021 ★ 初二數學知識點整理歸納 ★ 部編版初二數學知識點梳理
Ⅳ 初二代數和幾何個是數學
初二代數和幾何是數學的重要組成部分。現在的初中數迅睜陪學課本已經合二為一,變為一本書了,個人覺得這也是一種進步,初中三年,每一年都是代數和幾何混著學,畝蠢學生學起來不容易累,能夠有所調早伏劑,而且現在的教材的編排也比較合理,前後是有遞進關系的,學生學起來也比較輕松。
Ⅳ 人教版初二數學知識點總結
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些初二滾賣數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
數據的分析
1、平均數
①一般地,對於n個數x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的「重要程度」未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數。
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處於最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數。
②一組數據中出現次數最多的那個數據叫做這組數據的眾數。
③平均數、中位數和眾數都是描述數據集中趨勢的統計量。
④計算平均數時,所有斗備嫌數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息。
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義。
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對於集中趨勢的偏離情況。一組數據中數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量。
②數學上,數據的離散程度還可以用方差或標准差刻畫。
③方差是各個數據與平均數差的平方的平均數。
④其中是x1,x2.....xn平均數,s2是方差,而標准差就是方差的算術平方根。
⑤一般而言,一組數據的極差、方差或標准差越小,這組數據就越穩定。
八年級 數學知識點歸納
分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的 方法 分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
學好數學的關鍵就在於要適時適量地進行 總結 歸類,接下來我就為大家整理了這篇人教版八年級數學全等三角形知識點講解,希望可以對大家有所幫助。
全等三角形的性質:全等三角形對應邊相等、對應角相等。
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相空手等
角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
人教版八年級數學全等三角形知識點講解就為大家介紹到這里了,希望大家都能養成善於總結的好習慣。
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
初二數學 復習方法 總結
一、初中數學中考復習方法:
數學家華羅庚曾經說過:「聰明在於學習,天才在於勤奮」,勤能補拙是良訓,一分辛勞一分才。
1.復習一定要做到勤
勤動手:做題不要看,一定要算,不會的知識點寫下來,記在 筆記本 上。
勤動口:不會的有疑問的一定要問老師,時間不等人,在沒有時間可以浪費。而且學會與同學討論問題。
勤動耳:老師講的復習課一定要聽,不要認為這道題會,老師講就可以溜號,須知溫故可知新。
勤動腦:善於思考問題,積極思考問題——吸收、儲存信息
勤動腿:不要參加過於激烈的運動,防止受傷影響學習,但要運動,每天慢跑30分鍾即可,報至狀態。
2.初中數學復習還要強調兩個要點:
一要:動手,二要:動腦。
動腦就是要學會觀察分析問題,學會思考,不要拿到題就做,找到已知和未知之間的聯系,多問幾個為什麼,多體會考的哪個知識點。
動手就是多實踐,多做題,要拳不離手曲不離口。同學就是題不離手,這兩個要點大家要記住並且要堅持住。動腦又動手,才能地發揮大腦的效率。這也是老師的 經驗 。
3.用心做到三個一遍
上課要認真聽一遍:聽老師講的方法知識等。
動手算一遍:按照老師的思路算一遍看看是否融會貫通。
認真想一遍:想想為什麼這么做題,考的哪個知識。
4.重視簡單的學習過程
讀好一本教科書它是教學、中考的主要依據;
記好一本筆記方法知識是教師多年經驗的結晶,每人自己准備一本錯題集;
做好做凈一本習題集它是使知識拓寬;
這些看似平凡簡單,但是確實老師親身的體驗,用心觀察我們的中考、高考狀元,其實他們每天重復的不就是老師剛剛說的嗎?
沒有寶典神功,只有普普通通。最最難能可貴的是堅持。
資源可以的話,找幾套往屆的期末考試題,是自己縣區的,其他縣區也可以(考點差不多一樣的),在規定時間內,摸摸底,熟悉每個章節考的的題型,練練自己的做題效率。很多同學第一次做練習出錯,如果不及時糾正、 反思 ,而僅僅是把答案改正,那麼他沒有真正地弄明白自己到底錯在什麼地方,也就沒弄明白如何應用這部分知識,最終會導致在今後遇到類似的問題一錯再錯。
人教版初二數學知識點總結相關 文章 :
★ 初二數學知識點歸納上冊人教版
★ 人教版八年級數學上冊知識點總結
★ 初二數學人教版知識點總結歸納
★ 初二數學上冊知識點總結
★ 八年級數學知識點整理歸納
★ 人教版初二數學上知識點總結
★ 初二數學上冊知識點總結人教版
★ 人教版初二數學上學期知識點總結
★ 初二數學知識點人教版
★ 人教版初二上數學知識點
Ⅵ 初中數學課本上的雲圖都有哪些用處呢
初中數學課本上的雲圖的作用是更注重學生的自主學習。根據相關信息查詢所得轎告。雲圖是新教材特有的一個區別閉肆明於傳統教材的顯著特雹胡點。
Ⅶ 什麼叫雲圖
如果天上有雲,你把它拍下來,列印出來,那個就歷叢是雲圖。正規雲圖都是一些很指爛嫌典型的雲類,是用來教氣象觀測人員如何區分唯手各種雲,認識哪些雲會有降水,哪些不會。
雲分低雲、中雲、高雲。細分的話,一共有11族。
Ⅷ 初二上冊課本一共有幾本
初二上冊的課本一共有八本——如圖示人教版的封面
語文、數學、外語、物理、地理、生物、歷史、道德與法治
Ⅸ 卷雲的纖維狀結構在什麼雲圖表現最清楚
卷雲的纖維狀結構,在雲圖上表現得最為清晰。卷雲一般呈現出了其特有的線狀結構。在雲圖上,我們可以觀察到一些跟著天空飄動的線伍答條。這些線條往往是卷雲所形成的,也就是卷雲的脊橘兄纖維狀結構。這種雲屬於雲朵中捲曲,或者疊在一起的雲層。這櫻襲種雲的高度較低,基本在600米至2千米左右,因此更適合在低空和中層的雲圖上展示。在這些雲圖中,卷雲的纖維狀結構最明顯,看上去就像一條條白色的雲絲在天空中舞動。
Ⅹ 八年級上冊數學書一次函數知識點
一定要做好預習
初二學生想要學好數學,一定要學會提前預習。將老師要將的內容提前預習一下,對於自己在預習中會出現的不理解的概念或者不懂的知識點,要做好標記和記錄,這樣初二學生在數學課堂上才會注意力集中,這樣在聽課的過程中才能夠跟上老師的講課思路,自己的思維才能夠集中。帶著問題去聽老師講課,這樣會將被動的學習變為主動,可以有效的提高初二新生在數學課堂上的學習效率。
課下要學會及時復習
當初二學生在課上認真聽講後,那麼對於初二數學的學習課後也是需要及時復習的。當老師講完初二數學一節課的內容之後,初中生一定要聽明白,不要留下任何的疑點,有不懂的地方要及時的問同學或者老師。這樣在課後復習的時候才能夠自己獨立的去完成作業。每一次的初二數學課後,初中生都應該將這節課學習的知識點進行歸納和整理。
初中數學有理數知識點
(一)定義
有理數為整數(正整數、0、負整數)和分數的統稱,正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
(二)有理數的性質
(1)順序性
(2)封閉性
(3)稠密性
(三)有理數的加法運演算法則
1、同號兩數相加,取與加數相同的符號,並把絕對值相加。
2、異號兩數相加,若絕對值相等則互為相反數的兩數和為0;若絕對值不相等,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。
3、互為相反數的兩數相加得0。
4、一個數同0相加仍得這個數。
5、互為相反數的兩個數,可以先相加。
6、符號相同的數可以先相加。
7、分母相同的數可以先相加。
8、幾個數相加能得整數的可以先相加。
9、減去一個數,等於加上這個數的相反數,即把有理數的減法利用數的相反數變成加法進行運算。
一般地,形如y=kx+b(k、b是常數,k≠0)函數,叫做一次函數。當b=0時,y=kx+b即y=kx,所以正比例函數是一種特殊的一次函數。
一次函數的圖象及性質
一次函數y=kx+b的圖象是經過(0,b)和(—b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到。(當b>0時,向上平移;當b<0時,向下平移)
(1)解析式:y=kx+b(k、b是常數,k≠0)
(2)必過點:(0,b)和(—b/k,0)
(3)走向:k>0,圖象經過第一、三象限;
k<0,圖象經過第二、四象限
b>0,圖象經過第一、二象限;
b<0,圖象經過第三、四象限
k>0,b>0;直線經過第一、二、三象限
K0;直線經過第一、二、四象限
K<0,b<0;直線經過第二、三、四象限
(4)增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小。
(5)傾斜度:|k|越大,圖象越接近於y軸;|k|越小,圖象越接近於x軸。
(6)圖像的平移:當b>0時,將直線y=kx的圖象向上平移b個單位;
當b<0時,將直線y=kx的圖象向下平移b個單位。
直線y=k1x+b1與y=k2x+b2的位置關系
(1)兩直線平行:k1=k2且b1≠b2
(2)兩直線相交:k1≠k2
(3)兩直線重合:k1=k2且b1=b2
確定一次函數解析式的方法
(1)根據已知條件寫出含有待定系數的函數解析式;
(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數解析式中得到以待定系數為未知數的方程;
(3)解方程得出未知系數的值;
(4)將求出的待定系數代回所求的函數解析式中得出結果。
函數建模的關鍵是將實際問題數學化,從而解決最佳方案、最佳策略等問題。建立一次函數模型解決實際問題,就是要從實際問題中抽象出兩個變數,再尋求出兩個變數之間的關系,構建函數模型,從而利用數學知識解決實際問題。
正比例函數的圖象和一次函數的圖象在賦予實際意義時,其圖象大多為線段或射線。這是因為在實際問題中,自變數的取值范圍是有一定的限制條件的,即自變數必須使實際問題有意義。從圖象中獲取的信息一般是:
(1)從函數圖象的形狀判定函數的類型;
(2)從橫、縱軸的實際意義理解圖象上點的'坐標的實際意義。解決含有多個變數的問題時,可以分析這些變數的關系,選取其中某個變數作為自變數,再根據問題的條件尋求可以反映實際問題的函數。
用函數觀點看方程(組)與不等式
一元一次方程與一次函數的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值。從圖象上看,相當於已知直線y=ax+b確定它與x軸的交點的橫坐標的值。
一次函數與一元一次不等式的關系
任何一個一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數,a≠0)的形式,所以解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數的取值范圍。
一次函數與二元一次方程組
(1)以二元一次方程ax+by=c的解為坐標的點組成的圖象與一次函數y=—(a/b)x++c/b的圖象相同。
(2)二元一次方程組
a1x+b1y=c1,a2x+b2y=c2;的解可以看作是兩個一次函數y=(a1/b1)x+c1/b1和y=—(a2/b2)x+c2/b2的圖像交點。