⑴ 大學師范數學系需要學哪些課程
主要專業課程
數學分析續論,高等代數、復變函數論,常微分方程,初等數論,近世代數,中學數學方法論,概率論與數理統計(三),組合數學,線性規劃,微分幾何,應用統計方法等。
畢業生應獲得以下幾方面的知識和能力:
1、具有良好的、穩定的思想品德、社會公德、職業道德,能為人師表。
2、有扎實的數學基礎,初步地掌握數學科學的基礎理論和基本思想方法。
3、有良好的使用計算機的能力。
4、具有良好的教師職業素養和從事數學教學的基本能力,熟悉教育法規,掌握並初步運用教育學、心理學基本理論以及數學教學理論,有較強的語言表達能力和班級管理能力。
5、掌握強身健體的科學方法,養成良好的體育鍛煉和衛生習慣,達到國家規定的關於大學生身體素質、心理素質和審美能力的要求。
就業方向
1、IT業職員
數學專業屬於基礎專業,是其他相關專業的「母專業」。該專業的畢業生如欲「轉行」進入科研數據分析、軟體開發、三維動畫製作等職業,具備先天的優勢。
2、商務人員
金融數學家已經是華爾街最搶手的人才之一。最簡單的例子是,保險公司中地位和收入最高的,可能就是總精算師。在美國,芝加哥大學、加州伯克利大學、斯坦福大學、卡內基·梅隆大學和紐約大學等著名學府,都已經設立了金融數學相關的學位或專業證書教育。
盡管如此,在美國很吃香的保險精算師,很多都是數學專業出身。除了保險精算師以外,由於經濟學也引入了數學建模,因此懂經濟原理的數學人才也被用人單位廣泛接納,還有國際經濟與貿易、工商管理、化工制葯、通訊工程、建築設計等,都離不開相關的數學專業知識。
3、教師類職業
全國37個大中城市人才市場的統計分析表明,數學教師十分搶手。拓寬師資渠道,面向社會招聘教師,已成為教育人事制度改革的重要舉措。這無疑為報考綜合院校數學專業畢業生就業提供了很大的發展空間。
;⑵ 大學數學專業學哪些內容
1.課程名稱:解析幾何AnalyticGeometry總學時:64周學時:4學分:3開課學期:一修讀對象:必修預修課程:無內容簡介:《解析幾何》是學科基礎課程,是所有數學專業及應用數學專業的主要的基礎課。
它是用代數的方法來研究幾何圖形性質的一門學科。
《解析幾何》包括向量與坐標,軌跡與方程,平面與空間直線,柱面、錐面、旋轉曲面與二次曲面,二次曲線的一般理論與二次曲面的一般理論等。
2.課程名稱:數學分析Ⅰ-ⅣMathematicalAnalysisⅠ-Ⅳ總學時:334周學時:4,4,6,5學分:18開課學期:一,二,三,四修讀對象:必修預修課程:無內容簡介:《數學分析》是學科基礎課程,是所有數學專業及應用數學專業的第一基礎課。
它提供了利用函數分析和解決實際問題的方法,培養學生嚴謹的抽象思維能力,為學習其他學科奠定基礎。
3.課程名稱:高等代數Ⅰ-ⅡAdvancedAlgebraⅠ-Ⅱ總學時:198周學時:6,5學分:11開課學期:二,三修讀對象:必修預修課程:無內容簡介:《高等代數》是學科基礎課程,是所有數學專業及應用數學專業的主要的基礎課。
4.課程名稱:常微分方程OrdinaryDifferentialEquation總學時:72周學時:4學分:4開課學期:五修讀對象:必修預修課程:數學分析高等代數內容簡介:《常微分方程》作為一門專業基礎課,是數學理論特別是微積分學聯系實際的重要渠道之一。
5.課程名稱:復變函數plexAnalysis總學時:72周學時:4學分:4開課學期:五修讀對象:必修預修課程:數學分析高等代數內容簡介:《復變函數》是專業基礎課,是函數論方面的基礎課程,它是數學分析的後繼課程。
這門課程主要內容是復數與復變函數,解析函數,復變函數的積分,解析函數的冪級數表示法,解析函數的洛朗展式志孤立奇點,留數理論及其應用,共形映射,解析延拓和調和函數。
6.課程名稱:概率論與數理統計總學握戚時:90周學時:5學分:5開課學期:五修讀對象:必修預修課程:數學分析高等代數內容簡介:《概率論與數理統計》是專業基礎課團埋,本課程是唯一一門處理隨機現象的數學類必修課程,本課程研究隨機現象的統計規律性及統計推斷,設置這一門課的目的在於使學生初步掌握處理隨機現象的基本理論和方法,並獲得解決和分析某些實際問題的能力。
7.課程名稱:初等數學研究ElementaryMathematicsResearch總學時:72周學時:4學分:4開課學期:六修讀對象:必修預修課程:數學分析高等代數內容簡介:《初等數學研究》是專業基礎課,初等數學研究主要包括初等代數和初等幾何兩部分內容,它是一門古老而又充滿生命力的學科,是師范院校數學專業的必修課程。
面向新課程改革,本課程比較系統地闡述了初等數學的基礎理論,其中包括 *** 與邏輯、數與式的理論、函數、方程與不等式的理論、公理化方法與圖形的演繹推理、幾何變換、幾何的向量結構及坐標法、排列組合與概率統計初步以及中學數學解題策略等內容。
8.課程名稱:近世代數ModernAlgebra總學時:72周學時:4學分:4開課學期:六修讀對象:必修預修課程:高等代數內容簡介:《近世代數》是專業基礎課,近世代數是近代數學的重要分支。
近世代數比較全面介紹了群、環、域的理論及一些具體的群、環和域。
9.課程名稱:實變函數與泛函分析總學時:72周學時:4學分:4開課學期:六修讀對象:必修預修課程:高等代數內容簡介:《實變函數與泛函分析》是專業基礎課,是是數學各專業的一門重要分析基礎課,它是學生進一步學習其它分析數學分支和科學研究必不可少的基礎知識,通過實變函數部分的學習,應使學生較好的掌握測度與積分這個基本的數學工具,特別是極限與積分順序的交換。
並且在一定程度上掌握集的分析方法。
泛函分析是學習和研究近代數學的純粹數學與應用數學,數理經濟數值計算及現代工程技術理論。
10.課程名稱:微分幾何DifferentialGeometry總學時:54周學時:3學分:3開課學期:五修讀對象:選修預修課程:數學分析常微分方程內容簡介:《微分幾何》是素質拓展課塌皮螞程,是以數學分析為主要工具研究空間形式的一門學科,是幾何學的一個分支,由於微分幾何這門學科在科學技術和其他自然科學的領域中日趨廣泛的滲透和應用,它的生命力至今還很旺盛,從內容和方法上不斷有所更新。
11.課程名稱:拓撲學Topology總學時:54周學時:3學分:3開課學期:六修讀對象:選修預修課程:數學分析內容簡介:拓撲學是專業拓展課程,是基礎性的數學分支,它研究幾何圖形在連續變形(即拓撲變換)下保持不變的性質,即拓撲性質。
目前,拓撲學的概念、方法和理論已經廣泛地滲透到現代數學以及鄰近學科的許多領域,並且有了日益重要的應用。
12.課程名稱:數學物理方程總學時:36周學時:2學分:2開課學期:七修讀對象:必修預修課程:數學分析、高等代數、微分方程內容簡介:《數學物理方程》是專業拓展課程。
它綜合運用前期數學知識解決有關的實際問題,是聯系數學建模和方程問題求解的橋梁。
主要內容有三類最重要的偏微分方程(Laplace方程,熱傳導方程,波動方程)的數學模型和各種定解條件的提出;求解偏微分方程的基本方法:分離變數法、積分變換法(Fourier變換和Laplace變換)、行波法、基本解和Green函數法和兩類最常用的特殊—柱函數(Bessel方程、Bessel函數性質及應用)和球函數(Legendre方程和Legendre函數性質和應用)。
13.課程名稱:數學建模MathematicalModeling總學時:54(18+36)周學時:1+2學分:3開課學期:五修讀對象:選修預修課程:數學分析,高等代數,概率論與數理統計,計算方法內容簡介:《數學建模》是專業拓展課程。
主要培養學生綜合運用數學知識解決實際問題的能力與意識。
主要內容有數學建模的一般方法(初等模型),微分方程與差分方程模型理論與方法及應用(種群生態學模型、動態經濟學模型、動力系統穩定性問題)、模式識別模型方法、理論與應用(代數方法、概率統計方法、人工神經網路方法),綜合決策模型與應用(層次分析法模型)。
14.課程名稱:運籌學OperationalResearch總學時:36周學時:2學分:2開課學期:七修讀對象:選修預修課程:高等數學、線性代數內容簡介:《運籌學》是素質拓展課程,主要內容包括:運籌學簡史、線性規劃與目標規劃、整數規劃、非線性規劃、動態規劃、圖論與網路分析、排論隊簡介、存貯論、對策論與決策論簡介。
15.課程名稱:離散數學DiscreteMathematics總學時:54周學時:3學分:3開課學期:五修讀對象:選修預修課程:數學分析高等代數內容簡介:《離散數學》是專業拓展課程,本課程的目的是介紹離散數學的基本概念和原理,提高學生抽象思維和邏輯推理的能力。
16.課程名稱:計算方法putingMethod總學時:54周學時:3學分:3開課學期:六修讀對象:必修預修課程:數學分析、高等代數、微分方程內容簡介:《計算方法》又稱《數值分析》,是專業拓展課程,是研究各種數學問題求解的數值計算方法。
學習此課的目的是設計演算法求出數學模型的近似解。
17.課程名稱:數學軟體與實驗總學時:36(18+18)周學時:1+1學分:3開課學期:七修讀對象:選修預修課程:數學分析,高等代數,微分方程,計算方法內容簡介:《數學軟體與實驗》是專業拓展課程。
本課程圍繞對Mathematica軟體的學習介紹15個左右的數學實驗:微積分基礎、圓周率π的計算、最佳分數近似值、數列與級數、素數、幾何變換、無體運動、方程的迭代求解、函數極值的線搜索、最速降線、分形的概念與產生、混沌現象、計算機模擬、密碼、初等幾何定理的計算機證明等。
18.課程名稱:計算機網路puterworks總學時:54(18+36)周學時:1+2學分:3開課學期:五修讀對象:選修預修課程:大學計算機基礎Ⅰ-Ⅱ,內容簡介:《計算機網路》是素質拓展課程。
主要讓學生掌握各種計算機網路的相關知識,網路的設計理論、設計思路和方法技巧,了解主流的計算機網路協議,網路的發展趨勢以及它的應用前景。
19.課程名稱:C語言程序設計ProgramminginCLanguage總學時:54(36+18)周學時:2+1學分:3開課學期:五修讀對象:必修預修課程:大學計算機基礎Ⅰ-Ⅱ內容簡介:《C語言程序設計》是素質拓展課程。
它是一種常用的程序設計語言,是編程人員最廣泛使用的工具。
20.課程名稱:模糊數學FuzzyMathematics總學時:54周學時:3學分:2開課學期:六修讀對象:選修預修課程:數學分析、高等代數、概率論、數理統計、離散數學內容簡介:《模糊數學》是素質拓展課程,模糊數學是以模糊 *** 論為基礎而發展起來的一門新興學科,是用數學處理各種各樣的模糊現象。
主要內容包括:模糊集的基本概念,模糊模式識別,模糊聚類分析,模糊綜合評判,集值統計與程度分析,綜合分析,綜合評判的逆問題等。
模糊數學擴大了數學的應用領域。
21.課程名稱:數學專業英語SpecialtyEnglishinMathematics總學時:54周學時:3學分:2開課學期:七修讀對象:選修預修課程:數學分析、高等代數、大學英語內容簡介:《數學專業英語》是素質拓展課程,數學專業英語是為學生進一步深造數學,進行數學方獻檢索工作或掌握計算機軟體和科學計算中經常碰到的數學英語詞彙而設立的一門課程。
熟悉數學專業英語,就等於掌握了研究數學的一種語言工具,並為科技翻譯培養素質。
22.課程名稱:偏微分方程PartialDifferentialEqua第8/10頁
tions總學時:54周學時:3學分:2開課學期:七修讀對象:選修預修課程:數學分析高等代數常微分方程內容簡介:《偏微分方程》是素質拓展課程,它是一門應用基礎學科,一方面與現代數學中分析、幾何等基本理論密切相關,同時又在物理、力學、生物、化學等自然科學及經濟、金融等社會科學中有重要的應用背景。
23.課程名稱:競賽數學petitionMathematics總學時:54周學時:3學分:2開課學期:七修讀對象:選修預修課程:中等數學解題研究內容簡介:《競賽數學》是素質拓展課程,作為一門數學教育學科,奧林匹克數學本身並不是一個數學分支,它是一個類似於中學數學、大學數學、趣味數學等這樣的特定數學范疇。
24.課程名稱:數學基礎教育案例研究總學時:54周學時:3學分:2開課學期:七修讀對象:選修預修課程:教育心理學,中學數學教材教法內容簡介:《數學基礎教育案例研究》是素質拓展課程,主要內容包括案例的數學教育主題與背景分析、數學教育情景描述(或演示)、數學教育注釋和案例詮釋與研究。
物理專業的數學課程有:
1.數學物理方法
Mathematical
課程編號:22189906課程編號:課程性質:專業必修課課程性質:課程內容:數學是物理學的表述語言。
復變函數論和數學物理方程是學習理論物理課程的重課程內容:要的數學基礎。
該課程包括復變函數論和數學物理方程兩部分。
復變函數論部分介紹復變函數的微積分,級數展開,留數及其應用以及積分變換等內容。
數學物理方程部分包括物理學中常用的幾種數學物理方程的導入、解數學物理方程的分離變數法、作為勒讓德方程的解的勒讓德多項式和作為貝塞爾方程的解的貝塞爾函數及其性質以及格林函數的基本知識。
該課程有著邏輯推理抽象嚴謹的特點,同時與物理以及工程又有著緊密的聯系,是理工科學生必備的數學基礎知識。
⑶ 那個初中數學教師資格證,專業知識到底考什麼呀。
初中數學教師資格證專業知識考試內容如下:
中學教師資格證考試科目為3科,分別是綜合素質(中學)、教育知識與能力、學科知識與教學能力。
具體的考試內容又主要如下:
1.學科知識
數學學科知識包括大學專科數學專業基礎課程、高中數學課程中的必修內容和部分選修內容以及初中數學課程中的內容知識。
2.課程知識
了解初中數學課程的性質、基本理念和目標;熟悉《課標》所規定的教學內容的知識體系,同時掌握對教學內容的轎枝要求。能運用《課標》指導自己的數學教學實踐。
3.教學知識
掌握講授法、討論法、自學輔導法、發現法等常見的數學教學方法。了解包括備課、課堂教學、作業批改與考試宴稿、數學課外活動、數學教學評價等基本環節的教學過程。掌握數學教學評價的基本知識和方法。
4.教學技能
(1)教學設計:能夠根據學生已有的知識水平和數學學習經驗,准確把握所教內容與學生已學知識的聯系。設計出合理的方案。
(2)教學實施
(3)教學評晌帆孝價
⑷ 教師招聘小學數學學科專業知識考什麼
教師招聘小學數學學科專業知識考試內容:
1.數的認識
⑴整數、分數、小數和百分數的意義,數的改寫和求近似數;數位和數級的順序、名稱及計數單位間的關系;比較分數、小數和百分數的大小。
⑵小數的性質、分數的基本性質,約分和通分;分數、小數和百分數之間的關系。
⑶有理數的意義、大小。
⑷平方根、算術平方根、立方根、無理數和實數的概念。
2.數的運算與性質
⑴四則運算的意義、運演算法則和運算定律;口算、筆算、估算的基本方法和相應算理。
⑵積的變化規律、商不變的性質和小數的性質。
⑶比和比例的各部分名稱及相互關系;比、比例的意義和基本性質;正比例和反比例的意義,解決比例的有關問題。
⑷常見的數量關系。
⑸實數的加、減、乘、除、乘方及簡單的混合運算。
⑹整除、約數、倍數的定義,用定義證明整除問題。
⑺帶余除法的意義、帶余除法表達式。
⑻奇數、偶數的定義和性質,奇偶分析法。
⑼被2,3,5整除的數的特徵。
⑽因數(約數)、倍數、質數(素數)、合數、質因數、公因數(公約數)和最小公倍數以及互質數的概念;分解質因數;公因數、最小公倍數及其應用。
3.常見的量
⑴常用的時間單位、長度單位、質量單位和面積單位以及體積與容積單位。
⑵用單位間的進率進行單位換算。
4.代數式與方程
⑴用字母表示數的意義,列代數式,求代數式的值。
⑵整數指數冪的意義和基本性質;整式,整式的加法、減法和乘法運算。
⑶分式的概念、基本性質和運算。
⑷二次根式,二次根式的性質及其加、減、乘、除運演算法則。
⑸等式的性質;方程、方程的解。
⑹一元一次方程、一元二次方程、二元一次方程(組)、分式方程的概念、解法及其應用,檢驗方程的解是否合理。
5.不等式
⑴不等式的概念與基本性質,簡單不等式的解法。
⑵一元一次不等式(組)及其簡單應用。
⑶用比較法、綜合法、分析法等證明簡單的不等式。
⑷基本不等式:
6.集合
⑴集合,元素與集合間的關系,集合的表示方法。
⑵集合之間的包含和相等關系;全集與空集的含義。
⑶並集、交集和補集的含義、運算;用韋恩圖表示簡單集合間的關系與運算。
⑷區間及其表示方法。
7.函數
⑴映射與函數的概念;求簡單函數的定義域和值域;反函數,求簡單函數的反函數。
⑵常量、變數;一次函數、正比例函數、反比例函數、二次函數的概念、性質和應用。
⑶函數的奇偶性、單調性和周期性;判斷簡單函數的奇偶性、周期性。
⑷復合函數的概念,將復合函數分解成幾個簡單函數。
⑸分數指數冪的概念、運算及性質;對數的概念和運算性質。
⑹初等函數的概念;冪函數、指數函數、對數函數的概念、圖像和性質。
⑺角、弧度制、任意角的三角函數、三角函數線等概念,同角三角函數的基本關系,正弦、餘弦的誘導公式;兩角和與差以及二倍角的正弦、餘弦和正切公式;正弦函數、餘弦函數的圖像和性質。
⑻正弦定理、餘弦定理及其應用。
(4)教學數學專業知識有哪些擴展閱讀:
教師招聘小學數學學科面試注意事項:
一、忌撰寫時間過長、內容過細
我們需要認真撰寫備課稿,但這並不意味著我們一定要把所有的准備時間都用在「寫」上,我們要預留出一定的時間,去梳理所寫內容,否則,在說的過程中會因不熟悉內容而造成表述不流暢的問題。其次,在撰寫時內容不要過於詳細,過於詳細的說課稿會在說的過程中產生依賴性,最終將脫稿「說課」變為照稿「讀課」。
二、忌口頭禪過多
人在緊張的情況下表現在語言上就是過多的口頭禪,例如「嗯」、「啊」等一些語氣詞,「對吧」、「是吧」、「所以」等一些固定詞語多次出現在說的過程中,這些口頭禪都會將整體的說課效果拉低,防止這種弊病的方式就是減慢自己的語言速度,將精力集中在自己的說課流程中,而不是考官的反應中,同時在上考場前深呼吸,調整好自己的狀態。
三、忌無肢體語言
說課的自然不僅體現在口頭語言上,自然的肢體語言同樣不可或缺,在說的過程中最忌雙手捧著備課稿、一動不動的站在某處,所以說課時一手拿稿,結合著所說內容適時的加上一些肢體語言,當然,過猶不及,不能沒有肢體語言也不能有過於繁瑣的肢體語言,比如多次的做一個動作,或者頻繁的在講台來回走動。
四、忌無原因闡釋
說課的又一大特點是,不僅要說出自己的設計思路,同時還要說出自己的設計理由,因此從教學目標這一環節開始就要注意對每一個環節設計依據進行說明,說課與試講不同,它的受眾群體是同行,所以原因的闡釋,是要讓考官看到你的教學理念、設計依據以及所能達成的教學效果。
⑸ 小學數學教師應掌握的專業知識
所需具備的知識:
1、要具有數學專業知識與理論,必要的數學專業知識與理論是小學數學教師學科素養的基礎。
2、教師對自己所教的數學知識應該懂得其來龍去脈,不姿悶能只知其然,而不知其所以然。
3、小學數學鄭冊攔教師還應該掌握必要數學思想和方法。只有這樣,在教學中才能游刃有餘,才能把學生教活,使學生的學習觸類旁通。
4、小學數學教師要能嚴謹的運用數學符號,不僅喊胡如此,還要在數學教學活動中嚴謹規
⑹ 小學數學教育專業主要學什麼-專業課程有哪些
小學數學教敬尺育專業主要學心理瞎尺學基礎、教磨稿高育學基礎、班級管理、教師職業道德、小學教師專業發展、數字化教育技術應用、教師口語、 書 寫技能、空間解析幾何、線性代數等課程,以下是相關介紹,供大家參考。
1、專業課程
專業基礎課程:心理學基礎、教育學基礎、班級管理、教師職業道德、小學教師專業發展、數字化教育技術應用、教師口語、書寫技能。
專業核心課程:空間解析幾何、線性代數、微積分、概率統計基礎、小學數學研究、小學數學課程與教學、小學數學教學案例分析、小學數學教學技能。
面向小學數學教育工作者等職業。
⑺ 關於數學的知識有哪些
關於數學的知識:
1、最早使用小圓點作為小數點的是德國的數學家,叫克拉維斯。
2、「七巧板」是我國古代的一種拼板玩具,由七塊可以拼成一個大正方形的薄板組成,拼出來的圖案變化萬千,後來傳到國外叫作唐圖。
3、中國是最早使用四捨五入法進行計算的國家。
4、數學,是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
借用《數學簡史》的話,數學就是研究集合上各種結構(關系)的科學,可見,數學是一門抽象的學科,而嚴謹的過程是數學抽象的關鍵。數學在人類歷史發展和社會生活中發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
5、數學,其有學習、學問、科學之意。古希臘學者視其為哲學之起點,學問的基礎。另外,還有個較狹隘且技術性的意義,數學研究。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。
學好數學方法
1、一步一個腳印,打好基礎。學習數學千萬別想著一蹴而就,幾天就能提分,數學也是個日積月累的過程,舉個例子,初中三年的數學一直不好,到了高中,數學成績也好不到哪裡去,還是需要把初中的數學知識補上了,才能繼續攻克高中的數學難題。所以一開始就不要落下數學,緊緊跟。
2、多做題型,萬變不離其宗。很多學子表示,上課的知識點已經都掌握了,但是考試的時候遇到新的花樣,就又不會了。其實,這還是題型做得少了,平時要多做題,刷各自題型,正所謂萬變不離其宗,做得多了,考試的時候也就適應新題型了。
3、基本的公式要記牢,別混淆。伴隨著數學知識學得越來越多,很多學子的對基本公式已經徹底混淆了,尤其是到了高中,考試的時候不知道該套用哪套公式了。這就需要學子必須牢牢記住每一個公式,活學活用。
⑻ 數學專業有哪些專業課程
數學專業的專業課程有:
一、數學分析
又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
二、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
三、復變函數論
復變函數論是數學中一個基本的分支學科,它的研究對象是復變數的函數。復變函數論歷史悠久,內容豐富,理論十分完美。它在數學許多分支、力學以及工程技術科學中有著廣泛的應用。 復數起源於求代數方程的根。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
四、抽象代數
抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
五、近世代數
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。
法國數學家伽羅瓦在1832年運用「群」的思想徹底解決了用根式求解多項式方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解代數方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。
參考資料來源:
網路—數學分析
網路—高等代數
網路—復變函數論
網路—抽象代數
網路—近世代數
⑼ 數學學科知識是什麼
問題一:數學學科專業知識是指什麼具體內容 你好,數學是個總稱,數學里包含的知識可以說是太多太多了,我大學數學系,13們數學課程,相比高中那些數學,那些只能算是算數了。數學分外很多種,比如說:微積分,復變,實變,泛函分析,解析幾何,離散數學,初等數論,常微分方程,數理方程等等,太多了。
問題二:數學學科知識與教學能力初中怎麼學習 一、考試目標
1.數學學枝漏科知識的掌握和運用。掌握大學專科數學專業基礎課程的知識、中學數學的知識。具有在初中數學教學實踐中綜合而有效地運用這些知識的能力。
2.初中數學課程知識的掌握和運用。理解初中數學課程的性質、基本理念和目標,熟悉《全日制義務教育數學課程標准(實驗)》(以下簡稱《課標》)規定的教學內容和要求。
3. 數學教學知識的掌握和應用。理解有關的數學教學知識,具有教學設計、教學實施和教學評價的能力。
二、考試內容模塊與要求
初中數學教師教學知識與能力考試內容主要有數學學科知識、數學課程知識、數學教學知識和數學教學技能。
具體考試內容和要求如下:
1.數學學科知識
數學學科知識包括大學專科數學專業基礎課程、高中數學課程中的必修內容和部分選修內容以及初中數學課程中的內容知識。
大學專科數學專業基礎課程知識是指:數學分析、高等代數、解析幾何、概率論與數理統計等大學專科數學課程中與中學數學密切相關的內容。
其內容要求是:准確掌握基本概念,熟練進行運算,並能夠利用這些知識去解決中學數學的問題。
問題三:那個初中數學教師資格證,專業知識到底考什麼呀。 你是說考教師資格證嗎攜早?不管你報哪個科目,都是考教育學,心理學,普通話三門。
如果你說的是你有數學教師資格證,然後要考老師,專業知識就是 數學知識,數學教材教法。
問題四:教師資格證(高中數學)學科知識與教學能力怎麼復習? 中小學教師資格證 數學是考高中的數學知識 那高中的教師資格證 教學能力 應該是考相應學科大學的知識 所以好好復習一下大學高等數學 高中數學也看看 畢竟考試是基礎的多 還有你可以選擇報名教學機構 他們都有專門培訓 學費就幾百塊錢 不貴 最後 祝你考試順利
問題五:什麼是數學基礎知識 眾所周知,概念是思維的基本形式之一,是對一切事物進行判斷和推理的基礎.數學概念是構成數學知識的基礎,是基礎知識和基本技能教學的核心,正確地理解數學概念是掌握數學知識的前提.因此數學概念的教學是數學教學的一個重要方面,但數學概念的抽象性使得數學概念的教學相對棘手. 概念的產生都有其必然性,我們要抓住概念產生的背景,讓學生了解數學概念的產生、發猛隱爛展、演變的原因以及在這些原因中所隱藏著數學概念間的內在聯系,將數學概念在數學思想的整體連貫性中的作用體現出來. 因此,教師在講授新的概念時,可以分析概念產生的背景.找出合適學生理解的、有趣而生動的切入點,讓學生更容易理解新概念,更容易對新知識找到共鳴,才能讓學生有更多的機會參與發現需要建立新概念的時機並加入到這一創造活動中去,從中感受和諧、連貫、嚴密、有用的數學之美.下面淺談一下在概念教學中用到的幾種方法. 一、從概念的產生背景著手,層層深入 對數這一概念就是學生在數學學習中遇到的一個非常抽象的概念,直接講授的方式會使學生難於理解.其實我們分析一下對數產生的背景,可以發現這是數學運算發展到一定的階段後,必然產生的一種新運算.加法發展到一定程度必然要引入減法,乘方發展到一定階段必然要出現開方一樣,對數也是為了生產生活中的計算需要而必然產生的.如果把這些概念的背景、運算方式列成表格,在對比過程中自然而然形成新的概念,使學生輕松地接受並理解它. 教師可以設置了一個這樣的教學引入過程: 首先提出兩個問題1、1個細胞一次分裂成兩個細胞,請問1個細胞需要分裂多少次以後才能分裂成128個?2、某人原來年薪為a萬元,假設他的工資以每年10%的速度增長,請問經過多少年以後他的年薪增長為原來的2倍? 這兩個例題中,運用的運算都是解指數方程:1、,2、.但第一題答案是特殊值,不需要引入新運算;第二題答案則不是特殊值了,在現有的運算中,答案算不出來.如何讓解決這一問題? 緊接著,教師再提出了幾種具有互逆關系的運算進行對比,如:3+x=10 x=10-3、5=8 x=、 . 在接下來的教學中,我們就可以自然的將指數式化成對數式x=,引入新的運算概念.並且指出:指數式與對數式的關系(1)是等價的(2)它們只是寫法不一樣,讀法不一樣,a、b、N的名稱不一樣,所在位置不一樣,但代表的數一樣,含義一樣,數的范圍也是一樣,只要牢牢記住指數式和對數式中的字母a、b、N交換的方式、交換的位置,就可以自由的將指數式和對數式進行互化.在這個過程中,指數對數與加減、乘除、乘方開方之間關系是相類似的,這些概念之間的對比要貫穿教學始終,以便於學生的理解. 二、從概念的生活背景出發,創設學習情境 很多數學概念是人們在長期的現實生活中對事物進行高度抽象概括的產物,有具體的素材為基礎,有生動的現實原型,教師要善於結合生活實際,通過多種方式創造良好的學習情境激發學生的學習興趣,使學生覺得這些抽象的數學概念彷彿就在自己的身邊,伸手可摸. 等比數列這樣的概念就是直接源於生活的概念,在講授的過程中,現實生活中的實例隨手可得,如常見的細胞分裂問題,商店打折問題,放射性物質的重量問題,銀行利率,為自己家選擇合適的還貸方式等等實例可以信手拈來穿插在概念的講解、鞏固的過程中. 為了讓學生積極性充分發揮出來,我還設計了一個有趣的問題情境引入等比數列這一概念: 阿基里斯(希臘神話中的善跑英雄)和烏龜賽跑,烏龜在前方1里處,阿基里斯的速度是烏龜的10倍,當......>>
問題六:教師證全國統考里的《數學 學科知識與教學能力》分為初級中學和高級中學嗎?是考試在哪裡有什麼不一樣? 10分 初中和高中大不一樣。初中的學科知識與教學能力是針對初中數學教學的,高中是針對高中學科的。
更詳細的區分請登錄教育部考試中心主辦的中小學教師資格考試網查詢。
問題七:考教師資格證初中數學,都是考哪方面的學科知識 學科知識 41% 單項選擇題 簡答題 解答題
課程知識 18% 單項選擇題 簡答題 論述題
教學知識 8% 單項選擇題 簡答題
教學技能 33% 案例分析題 教學設計題
初中數學學科知識包括大學專科數學專業基礎課程、高中數學課程中的必修內容和部分選修內容以及初中數學課程中的內容知識。
具體內容
1、數學分析、高等代數、解析幾何、概率論與數理統計等大學專科數學課程中與中學數學密切相關的內容。
2、高中數學課程中的 必修內容、選修課中的系列1、2的內容以及選修3―1(數學史選講),選修4―1(幾何證明選講)、選修4―2(矩陣與變換)、選修4―4(坐標系與參數 方程)、選修4―5(不等式選講)以及初中課程中的全部數學知識。
問題八:學科專業基礎知識是指什麼 就是你在本科期間學的是中文系或者數學系的專業知識
⑽ 一個優秀的數學教師應該具備哪些知識,怎樣具備這些知識
做一名學生喜歡的數學教師,
讓學生喜歡上你的數學課,
就應該用自身的人格魅力去吸引學生,。
一、過硬的專業知識
教師必須有扎實的專業知識,才能把課教好教活。比如,作為數學教師,你就應該是解題的能手,並且要能夠具有幫助學生解答疑難問題的能力,
否則,你就很難在學生中建立威信,
也很難在課堂上應付自如。專業知識一般指數學教師特有的數學能力。包括以下幾個方面:
1、計算能力
主要體現在對算理的透徹理解,對運算性質、運算定律的靈活應用以及對數據、運算順序、算式特點的巧妙處理和高度敏感,使復雜的計算變得簡單,從而正確、迅速、合理、靈活地算出結果。
2、邏輯思維能力
主要體現在教師應能用分析、綜合等方法整理教材知識結構、探索和表述解題思路,從而增強解題能力。在學生數學概念的形成和鞏固、數學規律的探索和猜想的建立中能熟練地應用分析、綜合、比較、抽象、歸納、類比等方法進行教學。
3、空間想像力
要求能從空間圖形及某些意志條件分析中圖形中點、線、面、體之間的關系,能畫出實物、模型的直觀圖,能根據一段文字的描述想像出幾何形體,並能准確地畫出某些幾何形體的直觀圖。
4、運用數學知識解決實際問題的能力
小學數學教師不但要具有運用數學知識解決實際問題的能力,而且還要通過各種教學實踐活動或解答與生產日常生活中的題目,來培養學生運用數學知識解決間的實際問題的能力,所以教師要善於從生產或日常生活中發現編制應用題的題材,同時也要掌握各種數學思想方法,提高解題能力。
但是,僅僅精通本專業的知識是遠遠不夠的。因為,知識之間是相互聯系的,只有廣博,才有精深。所以,要求教師在掌握數學專業知識的同時,還要博覽群書,即要有淵博的知識。所以作為數學教師不但要多看一些專業方面的書籍,
還要多看一些提升素養的書籍,
來豐富自身的人格魅力,
是很有必要的。
二、鑽研教材、處理教材的能力
鑽研教材、處理教材的另一個方面就是精心選編練習。如果你認為教材中配備的練習不合適,就要自己選編練習。一定要克服在布置作業上的隨意性,因為那樣等於是在浪費學生的時間。一個優秀的數學教師,就應該具有根據教材靈活編寫練習題的能力,
哪些知識學生掌握起來有困難,
可以突出重點難點的多練習練習,
才有助於學生對知識的進一步鞏固掌握。