『壹』 數學中都有哪些符號都代表什麼意思
∈是集合中的符號,表示屬於關系,A∈B,表示集合A中的元素都在集合B的裡面。tan是三角函數的符號,代表正切。
『貳』 數學符號各有什麼含義(請說出所有的符號)
(1)數量符號:如
:i,2+
i,a,x,自然對數底e,圓周率
∏。
(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(
),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。
(3)關系符號:如「=」是等號,「≈」或「
」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「
」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。
(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」
(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」
(6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C
),冪(aM),階乘(!)等。
符號
意義
∞
無窮大
PI
圓周率
|x|
函數的絕對值
∪
集合並
∩
集合交
≥
大於等於
≤
小於等於
≡
恆等於或同餘
ln(x)
以e為底的對數
lg(x)
以10為底的對數
floor(x)
上取整函數
ceil(x)
下取整函數
x
mod
y
求余數
小數部分
x
-
floor(x)
∫f(x)δx
不定積分
∫[a:b]f(x)δx
a到b的定積分
P為真等於1否則等於0
∑[1≤k≤n]f(k)
對n進行求和,可以拓廣至很多情況
如:∑[n
is
prime][n
<
10]f(n)
∑∑[1≤i≤j≤n]n^2
lim
f(x)
(x->?)
求極限
f(z)
f關於z的m階導函數
C(n:m)
組合數,n中取m
P(n:m)
排列數
m|n
m整除n
m⊥n
m與n互質
a
∈
A
a屬於集合A
#A
集合A中的元素個數
『叄』 數學集合中的所有符號及其意義是什麼
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素.,集合可以用符號來表示,集合中的符號和意義如下:
∪ 並
∩ 交
⊂ A⊂B, A屬於B
⊃ A⊃B, A包括B
∈ a∈A,a是A的元素
⊆ A⊆B,A不大於B
⊇ A⊇B,A不小於B
Φ 空集
R 實數
N 自然數
Z 整數
Z+正整數
Z- 負整數
(3)符號在數學中什麼意思是什麼意思是什麼意思擴展閱讀:
集合有關概念 :
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
(1)元素的確定性;
(2)元素的互異性;
(3)元素的無序性
相關知識:
1、對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
2、任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
3、集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
集合的分類:
1、有限集 含有有限個元素的集合
2、無限集 含有無限個元素的集合
3、空集 不含任何元素的集合 例:{x|x2=-5}
集合的表示方法:
1、列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
2、描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
『肆』 數學符號含義 ~ 這個符號在數學里是什麼意思啊
數學符號*是乘號的意思。*還表示除0之外的數,例:N*表示正整數。
我們現在常用於乘法運算的符號有兩個,一個是「×」,另一個是「·」。 「×」是由1631年英國數學家奧雷特最早提出的,「·」是由英國數學家赫銳奧特首創的。
而德國數學家萊布尼茨則認為,「×」號與拉丁字母表示未知數的「拿雀茄X」很歲宴像,運算時容易混淆,因此加以反對。但他贊成用「·」來替代「×」。因此德國的數學書中,乘號與世界其他國家是不一樣的。
後萊布尼茨又提出用「п」符號表示相乘,但未得到認可,現在卻被用到了集合論中去。18世紀,美國數學家歐德萊認為,乘法就是一種特殊的增加,「×」是斜起來寫的「+」,用它表示相乘最合適,於是他確定用「×」表示兩數相乘,「×」就被用作乘法運算了。
(4)符號在數學中什麼意思是什麼意思是什麼意思擴展閱讀
乘法相關歷史:
乘法口訣(也叫「九九歌」)在我國很早就已產生。遠在春秋戰國時代,九九歌就已經廣泛地被人們利用著。在當時的許多著作中,已經引用部分乘法口訣。
最初的九九歌是以「九九八十一」起到「二二如四」止,共36句口訣。
發掘出的漢朝「竹木簡」以及敦煌發現的古「九九術殘木簡」上都是從「九九八十一」開始消察的。「九九」之名就是取口訣開頭的兩個字。公元5~10世紀間,「九九」口訣擴充到「一一如一」。
大約在宋朝(公元11、12世紀),九九歌的順序才變成和現代用的一樣,即從「一一如一」起到「九九八十一」止。
元朱世傑著《算學啟蒙》一書所載的45句口訣,已是從「一一」到」九九「,並稱為九數法。現在用的乘法口訣有兩種,一種是45句的,通常稱為小九九;還有一種是81句的,通常稱為大九九。書中記載,大九九最早見於清陳傑著的《演算法大成》。
『伍』 數學符號意思
∈屬於符號,表示元素與集合之間的一種從屬關系
∏求積符號
∑求和符號
∕相當於除號÷
√算術平方根,如±2的平方是4,那麼4的算術平方根是2
∝正比於,常見於物理學,如a∝b說明當a增加,b也增加
∞無窮
表示一種趨向,+∞表示不斷變大的趨勢
∟直角符號
∠角符號
∣絕對值符號與除號
‖平行
刻畫兩直線的關系
∧交符號
邏輯基本符號,表示兩個命題同時發生則命題成立
∨並符號
邏輯基本符號,表示兩個命題有一個發生則命題成立
∩交符號
集合基本符號,表示兩個集合同時滿足
∪並符號
集合基本符號,表示至少滿足一個集合
∫不定積分符號
微積分基本符號
∮積分符號
微積分基本符號
∴所以
∵因為
∶比例符號
∷比例
∽屬於符號
集合基本符號
刻畫兩個集合間的從屬關系
≈約等於符號
≌相似符號
刻畫集合圖形的基本特徵
≈約等號
刻畫兩個關系式之間的關系
≠不等號
兩者存在差異的地方
≡同餘符號
數論基本符號,表示兩個整數除以同一個特定的整數余數相等,例如5=2×2+1,7=2×3+1,那麼5≡7
(mod
2)
≤不大於
關系符號
前者小於或者等於後者
≥不小於
關系符號
前者大於或者等於後者
≤遠小於等於
關系符號
前者遠小於後者或與後者相等
≥遠大於等於
關系符號
前者遠大於後者或與後者相等
≮非小於
同≥
≯非大於
同≤
⊙圓
⊙O表示圓心為O的圓
⊥垂直
刻畫兩直線或空間間關系
⊿三角形
⌒反三角函數
sin正弦函數
Cos餘弦函數
tan正切函數
cot餘切函數
sec正割函數
csc餘割函數
log對數
ln自然對數
lg常用對數
+加法
-減法
×乘法
÷除法
『陸』 數學中的符號是什麼意思啊
數學集合符號如下:
1、N:非負整數集合或自然數集合{0,1,2,3,…}
2、N*或N+:正整數集合{1,2,3,…}
3、Z:整數集合{…,-1,0,1,…}
4、Q:有理數集合
5、Q+:正有理數集合
6、Q-:負有理數集合
7、R:實數集合(包括有理數和無理數)
8、R+:正實數集合
9、R-:負實數集合
10、C:復數集合
11、∅ :空集(不含有任何元素的集合)
集合基礎知識:
1、定義:一般地,我們把研究對象統稱為元素,一些元素組成的總體叫集合,也簡稱集;
2、表示方法:集合通常用大括弧{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。
3、關於集合的元素的特徵
(1)確定性:給定一個集合,那麼任何一個元素在或不在這個集合中就確定了;
(2)互異性:一個集合中的元素是互不相同的,即集合中的元素是不重復出現的;
(3)無序性:即集合中的元素無順序,可以任意排列、調換。
4、元素與集合的關系:(元素與集合的關系有「屬於」及「不屬於」兩種)
(1)若a是集合A中的元素,則稱a屬於集合A;
(2)若a不是集合A的元素,則稱a不屬於集合A。
5、集合的表示方法
(1)列舉法:把集合中的元素一一列舉出來, 並用花括弧括起來表示集合的方法叫列舉法;
(2)描述法:用集合所含元素的共同特徵表示集合的方法,稱為描述法;
(3)文氏(Venn)圖法:畫一條封閉的曲線,用它的內部來表示一個集合。
『柒』 數學符號 什麼意思
∑ 英語名稱:Sigma 漢語名稱:西格瑪(大寫Σ,小寫σ),是第十八個希臘字母.大寫Σ用於:
數學上的總和符號
比如:
∑Pi,其中i=1,2,...,T,
即為求P1 + P2 + ... + PT的和 ∏: 是希臘字母π的大寫,而Π 是與之相對應的求積符號,一般在Π下方會標出K=1,在Π 上方會標出一個數字(如N),這就說明Π 後面的一個數列,從1到N,將每一項,逐項相乘.
如Π(2+K)=(2+1)*(2+2)*(2+3)*....*(2+N)
(注:在Π下方標K=1,在Π 上方標N,)
n:開放分類: 化學、字母、元素、現代漢語
N, n 是察辯拉丁字母中的第14個敗改缺字母。
大寫N代表
在化學中,表示元素氮的化學符號
牛頓,物理學力的單位
數學中,代表自然數集
小寫n代表
在代數殲旦學中,常用作為整數值的變數
音標
國際音標
[n]是齒齦鼻音
[..]是小舌鼻音
漢語拼音
「n」是舌尖前鼻音 (齒齦鼻音)
等等。
『捌』 數學符號是什麼意思
數學符號*是乘號的意思。*還表示除0之外的數,例:N*表示正整數。
我們現在常用於乘法運算的符號有兩個,一個是「×」,另一個是「·」。 「×」是由1631年英國數學家奧雷特最早提出的,「·」是由英國數學家赫銳奧特首創的。
其他信息
在Microsoft Word中可以插入一般應用條件下的所有數學符號,以Word2010及2010版以上軟體為例介紹操作方法:
打開Word2010文檔窗口,單擊需要添加數學符號的公式,並將插入條游標定位到目標位置。
在「公式工具/設計」功能區的「符號」分組中,單擊「其他」按鈕打開符號面板。默認顯示的「基礎數學」符號面板。用戶可以在「基礎數學」符號面板中找到最常用的數學符號。同樣地,Alt+41420(即壓下Alt不放,依次按41420(小鍵盤),最後放開Alt 就可以打出 √。
『玖』 數學符號是什麼意思 數學符號解釋
1、數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現代數學常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。
2、例如加號曾經有好幾種,現代數學通用「+」號。「+」號是由拉文「et」(「和」的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文「plu」(「加」的意思)的第一個字母表示加,草為「μ」最後都變成了「+」號。「-」號是從拉丁文「minus」(「減」的意思)演變來的,一開始簡寫為m,再因快速書寫而簡化為「-」了。
3、也有人說,賣酒的商人用「-」表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在「-」上加一豎,意思是把原線條勾銷,這樣就成了個「+」號。
4、到了十五世紀,德國數學家魏德美正式確定:「+」用作加號,「-」用作減號。
5、乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。
6、到了十八世紀,美國數學家歐德萊確定,把「×」作為乘號。他認為「×」是「+」的旋轉變形,是另一種表示增加的符號。
7、「÷」最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用「:」表示除或比,另外有人用「-」(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將「÷」作為除號。
8、平方根號曾經用拉丁文「Radix」(根)的首尾兩個字母合並起來表示,十七世紀初葉,法國數學家笛卡兒在他的《幾何學》中,第一次用「√」表示根號。「√」是由拉丁字線「r」的變形,「 ̄」是括線。
9、十六世紀法國數學家維葉特用「=」表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號「=」就從1540年開始使用起來。
10、1591年,法國數學家韋達在菱形中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了「=」號,他還在幾何學中用「∽」表示相似,用「≌」表示全等。
11、大於號「>」和小於號「