導航:首頁 > 數字科學 > 數學發展史總結怎麼寫

數學發展史總結怎麼寫

發布時間:2023-05-29 12:34:37

1. 數的發展史

1 中國古代數學的發展

在古代世界四大文明中,中國數學持續繁榮時期最為長久。從公元前後至公元14世紀,中國古典數學先後經歷了三次發展高潮,即兩漢時期、魏晉南北朝時期和宋元時期,並在宋元時期達到頂峰。

與以證明定理為中心的希臘古典數學不同,中國古代數學是以創造演算法特別是各種解方程的演算法為主線。從線性方程組到高次多項式方程,乃至不定方程,中國古代數學家創造了一系列先進的演算法(中國數學家稱之為「術」),他們用這些演算法去求解相應類型的代數方程,從而解決導致這些方程的各種各樣的科學和實際問題。特別是,幾何問題也歸結為代數方程,然後用程式化的演算法來求解。因此,中國古代數學具有明顯的演算法化、機械化的特徵。以下擇要舉例說明中國古代數學發展的這種特徵。

1.1 線性方程組與「方程術」

中國古代最重要的數學經典《九章算術》(約公元前2世紀)卷8的「方程術」,是解線性方程組的演算法。以該卷第1題為例,用現代符號表述,該問題相當於解一個三元一次方程組:

3x+2y+z=39

2x+3y+z=34

x+2y+3z=26

《九章》沒有表示未知數的符號,而是用算籌將x�y�z的系數和常數項排列成一個(長)方陣:

1 2 3

2 3 2

3 1 1

26 34 39

「方程術」的關鍵演算法叫「遍乘直除」,在本例中演算程序如下:用右行(x)的系數(3)「遍乘」中行和左行各數,然後從所得結果按行分別「直除」右行,即連續減去右行對應各數,就將中行與左行的系數化為0。反復執行這種「遍乘直除」演算法,就可以解出方程。很清楚,《九章算術》方程術的「遍乘直除」 演算法,實質上就是我們今天所使用的解線性方程組的消元法,以往西方文獻中稱之為「高斯消去法」,但近年開始改變稱謂,如法國科學院院士、原蘇黎世大學數學系主任P.Gabriel教授在他撰寫的教科書[4]中就稱解線性方程組的消元法為「張蒼法」,張蒼相傳是《九章算術》的作者之一。

1.2 高次多項式方程與「正負開方術」

《九章算術》卷4中有「開方術」和「開立方術」。《九章算術》中的這些演算法後來逐步推廣到開更高次方的情形,並且在宋元時代發展為一般高次多項式方程的數值求解。秦九韶是這方面的集大成者,他在《數書九章》(1247年)一書中給出了高次多項式方程數值解的完整演算法,即他所稱的「正負開方術」。

用現代符號表達,秦九韶「正負開方術」的思路如下:對任意給定的方程

f(x)=a0xn+a1xn-1+……+an-2x2+an-1x+an=0 (1)

其中a0≠0,an<0,要求(1)式的一個正根。秦九韶先估計根的最高位數字,連同其位數一起稱為「首商」,記作c,則根x=c+h,代入(1)得

f(c+h)=a0(c+h)n+a1(c+h)n-1+……+an-1(c+h)+an=0

按h的冪次合並同類項即得到關於h的方程:

f(h)=a0hn+a1hn-1+……+an-1h+an=0 (2)

於是又可估計滿足新方程(2)的根的最高位數字。如此進行下去,若得到某個新方程的常數項為0,則求得的根是有理數;否則上述過程可繼續下去,按所需精度求得根的近似值。

如果從原方程(1)的系數a0,a1,…,an及估值c求出新方程(2)的系數a0,a1,…,an的演算法是需要反復迭代使用的,秦九韶給出了一個規格化的程序,我們可稱之為「秦九韶程序」, 他在《數書九章》中用這一演算法去解決各種可以歸結為代數方程的實際問題,其中涉及的方程最高次數達到10次,秦九韶解這些問題的演算法整齊劃一,步驟分明,堪稱是中國古代數學演算法化、機械化的典範。

1.3 多元高次方程組與「四元術」

絕不是所有的問題都可以歸結為線性方程組或一個未知量的多項式方程來求解。實際上,可以說更大量的實際問題如果能化為代數方程求解的話,出現的將是含有多個未知量的高次方程組。

多元高次方程組的求解即使在今天也絕非易事。歷史上最早對多元高次方程組作出系統處理的是中國元代數學家朱世傑。朱世傑的《四元玉鑒》(1303年)一書中涉及的高次方程達到了4個未知數。朱世傑用「四元術」來解這些方程。「四元術」首先是以「天」、「地」、「人」、「物」來表示不同的未知數,同時建立起方程式,然後用順序消元的一般方法解出方程。朱世傑在《四元玉鑒》中創造了多種消元程序。

通過《四元玉鑒》中的具體例子可以清晰地了解朱世傑「四元術」的特徵。值得注意的是,這些例子中相當一部分是由幾何問題導出的。這種將幾何問題轉化為代數方程並用某種統一的演算法求解的例子,在宋元數學著作中比比皆是,充分反映了中國古代幾何代數化和機械化的傾向。

1.4 一次同餘方程組與「中國剩餘定理」

中國古代數學家出於歷法計算的需要,很早就開始研究形如:

X≡Ri (mod ai) i=1,2,...,n (1)

(其中ai 是兩兩互素的整數)的一次同餘方程組求解問題。公元4世紀的《孫子算經》中已有相當於求解下列一次同餘組的著名的「孫子問題」:

X≡2(mod3) ≡3(mod5) ≡2(mod7)

《孫子算經》作者給出的解法,引導了宋代秦九韶求解一次同餘組的一般演算法——「大衍求一術」。現代文獻中通常把這種一般演算法稱為「中國剩餘定理」。

1.5 插值法與「招差術」

插值演算法在微積分的醞釀過程中扮演了重要角色。在中國,早從東漢時期起,學者們就慣用插值法來推算日月五星的運動。起初是簡單的一次內插法,隋唐時期出現二次插值法(如一行《大衍歷》,727年)。由於天體運動的加速度也不均勻,二次插值仍不夠精密。隨著歷法的進步,到了宋元時代,便產生了三次內插法(郭守敬《授時歷》,1280年)。在此基礎上,數學家朱世傑更創造出一般高次內插公式,即他所說的「招差術」。 朱世傑的公式相當於

f(n)=n△+ n(n�1)△2+ n(n�1)(n�2)△3

+ n(n�1)(n�2)(n�3)△4+……

這是一項很突出的成就。

這里不可能一一列舉中國古代數學家的所有演算法,但僅從以上介紹不難看到,古代與中世紀中國數學家創造的演算法,有許多即使按現代標准衡量也達到了很高的水平。這些演算法所表達的數學真理,有的在歐洲直到18世紀以後依賴近代數學工具才重新獲得(如前面提到的高次代數方程數值求解的秦九韶程序,與1819年英國數學家W. 霍納重新導出的「霍納演算法」基本一致;多元高次方程組的系統研究在歐洲也要到18世紀末才開始在E. 別朱等人的著作中出現;解一次同餘組的剩餘定理則由歐拉與高斯分別獨立重新獲得;至於朱世傑的高次內插公式,實質上已與現在通用的牛頓-格列高里公式相一致)。這些演算法的結構,其復雜程度也是驚人的。如對秦九韶「大衍求一術」和「正負開方術」的分析表明,這些演算法的計算程序,包含了現代計算機語言中構造非平易演算法的基本要素與基本結構。這類復雜的演算法,很難再僅僅被看作是簡單的經驗法則了,而是高度的概括思維能力的產物,這種能力與歐幾里得幾何的演繹思維風格截然不同,但卻在數學的發展中起著完全可與之相媲美的作用。事實上,古代中國演算法的繁榮,同時也孕育了一系列極其重要的概念,顯示了演算法化思維在數學進化中的創造意義和動力功能。以下亦舉幾例。

1.6 負數的引進

《九章算術》「方程術」的消元程序,在方程系數相減時會出現較小數減較大數的情況,正是在這里,《九章算術》的作者們引進了負數,並給出了正、負數的加減運演算法則,即「正負術」。

對負數的認識是人類數系擴充的重大步驟。公元7世紀印度數學家也開始使用負數,但負數的認識在歐洲卻進展緩慢,甚至到16世紀,韋達的著作還迴避負數。

1.7 無理數的發現

中國古代數學家在開方運算中接觸到了無理數。《九章算術》開方術中指出了存在有開不盡的情形:「若開方不盡者,為不可開」,《九章算術》的作者們給這種不盡根數起了一個專門名詞——「面」。「面」,就是無理數。與古希臘畢達哥拉斯學派發現正方形的對角線不是有理數時驚慌失措的表現相比,中國古代數學家卻是相對自然地接受了那些「開不盡」的無理數,這也許應歸功於他們早就習慣使用的十進位制,這種十進位制使他們能夠有效地計算「不盡根數」的近似值。為《九章算術》作注的三國時代數學家劉徽就在「開方術」注中明確提出了用十進制小數任意逼近不盡根數的方法,他稱之為「求微數法」,並指出在開方過程中,「其一退以十為步,其再退以百為步,退之彌下,其分彌細,則……雖有所棄之數,不足言之也」。

十進位值記數制是對人類文明不可磨滅的貢獻。法國大數學家拉普拉斯曾盛贊十進位值制的發明,認為它「使得我們的算術系統在所有有用的創造中成為第一流的」。中國古代數學家正是在嚴格遵循十進位制的籌算系統基礎上,建立起了富有演算法化特色的東方數學大廈。

1.8 賈憲三角或楊輝三角

從前面關於高次方程數值求解演算法(秦九韶程序)的介紹我們可以看到,中國古代開方術是以�c+hn的二項展開為基礎的,這就引導了二項系數表的發現。南宋數學家楊輝著《詳解九章演算法》(1261年)中,載有一張所謂「開方作法本源圖」,實際就是一張二項系數表。這張圖摘自公元1050年左右北宋數學家賈憲的一部著作。「開方作法本源圖」現在就叫「賈憲三角」或「楊輝三角」。二項系數表在西方則叫「帕斯卡三角」�1654年。

1.9 走向符號代數

解方程的數學活動,必然引起人們對方程表達形式的思考。在這方面,以解方程擅長的中國古代數學家們很自然也是走在了前列。在宋元時期的數學著作中,已出現了用特定的漢字作為未知數符號並進而建立方程的系統努力。這就是以李冶為代表的「天元術」和以朱世傑為代表的「四元術」。所謂「天元術」,首先是「立天元一為某某」,這相當於「設為某某」,「天元一」就表示未知數,然後在籌算盤上布列「天元式」,即一元方程式。該方法被推廣到多個未知數情形,就是前面提到的朱世傑的「四元術」。因此,用天元術和四元術列方程的方法,與現代代數中的列方程法已相類似。

符號化是近世代數的標志之一。中國宋元數學家在這方面邁出了重要一步,「天元術」和「四元術」,是以創造演算法特別是解方程的演算法為主線的中國古代數學的一個高峰�。

2 中國古代數學對世界數學發展的貢獻

數學的發展包括了兩大主要活動:證明定理和創造演算法。定理證明是希臘人首倡,後構成數學發展中演繹傾向的脊樑;演算法創造昌盛於古代和中世紀的中國、印度,形成了數學發展中強烈的演算法傾向。統觀數學的歷史將會發現,數學的發展並非總是演繹傾向獨占鰲頭。在數學史上,演算法傾向與演繹傾向總是交替地取得主導地位。古代巴比倫和埃及式的原始演算法時期,被希臘式的演繹幾何所接替,而在中世紀,希臘數學衰落下去,演算法傾向在中國、印度等東方國度繁榮起來;東方數學在文藝復興前夕通過阿拉伯傳播到歐洲,對近代數學興起產生了深刻影響。事實上,作為近代數學誕生標志的解析幾何與微積分,從思想方法的淵源看都不能說是演繹傾向而是演算法傾向的產物。

從微積分的歷史可以知道,微積分的產生是尋找解決一系列實際問題的普遍演算法的結果�6�。這些問題包括:決定物體的瞬時速度、求極大值與極小值、求曲線的切線、求物體的重心及引力、面積與體積計算等。從16世紀中開始的100多年間,許多大數學家都致力於獲得解決這些問題的特殊演算法。牛頓與萊布尼茲的功績是在於將這些特殊的演算法統一成兩類基本運算——微分與積分,並進一步指出了它們的互逆關系。無論是牛頓的先驅者還是牛頓本人,他們所使用的演算法都是不嚴格的,都沒有完整的演繹推導。牛頓的流數術在邏輯上的瑕疵更是眾所周知。對當時的學者來說,首要的是找到行之有效的演算法,而不是演算法的證明。這種傾向一直延續到18世紀。18世紀的數學家也往往不管微積分基礎的困難而大膽前進。如泰勒公式,歐拉、伯努利甚至19世紀初傅里葉所發現的三角展開等,都是在很長時期內缺乏嚴格的證明。正如馮·諾伊曼指出的那樣:沒有一個數學家會把這一時期的發展看作是異端邪道;這個時期產生的數學成果被公認為第一流的。並且反過來,如果當時的數學家一定要在有了嚴密的演繹證明之後才承認新演算法的合理性,那就不會有今天的微積分和整個分析大廈了。

現在再來看一看更早的解析幾何的誕生。通常認為,笛卡兒發明解析幾何的基本思想,是用代數方法來解幾何問題。這同歐氏演繹方法已經大相徑庭了。而事實上如果我們去閱讀笛卡兒的原著,就會發現貫穿於其中的徹底的演算法精神。《幾何學》開宗明義就宣稱:「我將毫不猶豫地在幾何學中引進算術的術語,以便使自己變得更加聰明」。眾所周知,笛卡兒的《幾何學》是他的哲學著作《方法論》的附錄。笛卡兒在他另一部生前未正式發表的哲學著作《指導思維的法則》(簡稱《法則》)中曾強烈批判了傳統的主要是希臘的研究方法,認為古希臘人的演繹推理只能用來證明已經知道的事物,「卻不能幫助我們發現未知的事情」。因此他提出「需要一種發現真理的方法」,並稱之為「通用數學」(mathesis universakis)。笛卡兒在《法則》中描述了這種通用數學的藍圖,他提出的大膽計劃,概而言之就是要將一切科學問題轉化為求解代數方程的數學問題:

任何問題→數學問題→代數問題→方程求解而笛卡兒的《幾何學》,正是他上述方案的一個具體實施和示範,解析幾何在整個方案中扮演著重要的工具作用,它將一切幾何問題化為代數問題,這些代數問題則可以用一種簡單的、幾乎自動的或者毋寧說是機械的方法去解決。這與上面介紹的古代中國數學家解決問題的路線可以說是一脈相承。

因此我們完全有理由說,在從文藝復興到17世紀近代數學興起的大潮中,回響著東方數學特別是中國數學的韻律。整個17—18世紀應該看成是尋求無窮小演算法的英雄年代,盡管這一時期的無窮小演算法與中世紀演算法相比有質的飛躍。而從19世紀特別是70年代直到20世紀中,演繹傾向又重新在比希臘幾何高得多的水準上占據了優勢。因此,數學的發展呈現出演算法創造與演繹證明兩大主流交替繁榮、螺旋式上升過程:

演繹傳統——定理證明活動

演算法傳統——演算法創造活動

中國古代數學家對演算法傳統的形成與發展做出了毋容置疑的巨大貢獻。

我們強調中國古代數學的演算法傳統,並不意味中國古代數學中沒有演繹傾向。事實上,在魏晉南北朝時期一些數學家的工作中,已出現具有相當深度的論證思想。如趙爽勾股定理證明、劉徽「陽馬」�一種長方錐體體積證明、祖沖之父子對球體積公式的推導等等,均可與古希臘數學家相應的工作媲美。趙爽勾股定理證明示意圖「弦圖」原型,已被採用作2002年國際數學家大會會標。令人迷惑的是,這種論證傾向隨著南北朝的結束,可以說是戛然而止。囿於篇幅和本文重點,對這方面的內容這里不能詳述,有興趣的讀者可參閱參考文獻�3�。

3 古為今用,創新發展

到了20世紀,至少從中葉開始,電子計算機的出現對數學的發展帶來了深遠影響,並孕育出孤立子理論、混沌動力學、四色定理證明等一系列令人矚目的成就。藉助計算機及有效的演算法猜測發現新事實、歸納證明新定理乃至進行更一般的自動推理……,這一切可以說已揭開了數學史上一個新的演算法繁榮時代的偉大序幕。科學界敏銳的有識之士紛紛預見到數學發展的這一趨勢。在我國,早在上世紀50年代,華羅庚教授就親自領導建立了計算機研製組,為我國計算機科學和數學的發展奠定了基礎。吳文俊教授更是從70年代中開始,毅然由原先從事的拓撲學領域轉向定理機器證明的研究,並開創了現代數學的嶄新領域——數學機械化。被國際上譽為「吳方法」的數學機械化方法已使中國在數學機械化領域處於國際領先地位,而正如吳文俊教授本人所說:「幾何定理證明的機械化問題,從思維到方法,至少在宋元時代就有蛛絲馬跡可尋,」他的工作「主要是受中國古代數學的啟發」。「吳方法」,是中國古代數學演算法化、機械化精髓的發揚光大。

計算機影響下演算法傾向的增長,自然也引起一些外國學者對中國古代數學中演算法傳統的興趣。早在上世紀70年代初,著名的計算機科學家D.E.Knuth就呼籲人們關注古代中國和印度的演算法�5�。多年來這方面的研究取得了一定進展,但總的來說還亟待加強。眾所周知,中國古代文化包括數學是通過著名的絲綢之路向西方傳播的,而阿拉伯地區是這種文化傳播的重要中轉站。現存有些阿拉伯數學與天文著作中包含有一定的中國數學與天文學知識,如著名的阿爾·卡西《算術之鑰》一書中有相當數量的數學問題顯示出直接或間接的中國來源,而根據阿爾·卡西本人記述,他所工作的天文台中就有不少來自中國的學者。

然而長期以來由於「西方中心論」特別是「希臘中心論」的影響以及語言文字方面的障礙,有關資料還遠遠沒有得到發掘。正是為了充分揭示東方數學與歐洲數學復興的關系,吳文俊教授特意從他榮獲的國家最高科學獎中撥出專款成立了「吳文俊數學與天文絲路基金」,鼓勵支持年輕學者深入開展這方面的研究,這是具有深遠意義之舉。

研究科學的歷史,其重要意義之一就是從歷史的發展中獲得借鑒和汲取教益,促進現實的科學研究,通俗地說就是「古為今用」。吳文俊對此有精闢的論述,他說:「假如你對數學的歷史發展,對一個領域的發生和發展,對一個理論的興旺和衰落,對一個概念的來龍去脈,對一種重要思想的產生和影響等這許多歷史因素都弄清了,我想,對數學就會了解得更多,對數學的現狀就會知道得更清楚、更深刻,還可以對數學的未來起一種指導作用,也就是說,可以知道數學究竟應該按怎樣的方向發展可以收到最大的效益」。數學機械化理論的創立,正是這種古為今用原則的碩果。我國科學技術的偉大復興,呼喚著更多這樣既有濃郁的中國特色、又有鮮明時代氣息的創新。

2. 數學的發展歷史是什麼

數學的發展歷史是:

1、第一時期:數學形成時期(遠古—公元前六世紀),這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本、最簡單的幾何形式,算術與幾何還沒有分開。

2、第二時期:初等數學時期、常量數學時期(公元前六世紀—公元十七世紀初)這個時期的基本的、最簡單的成果構成中學數學的主要內容,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。

3、第三時期:變數數學時期(公元十七世紀初—十九世紀末)變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus)的創立。

4、第四時期:現代數學時期(十九世紀末開始),數學發展的現代階段的開端,以其所有的基礎-代數、幾何、分析中的深刻變化為特徵。

5、中國數學的全盛時期是隋中葉至元後期。任何一個國家科學的發達,都有離不開清平開明的社會環境和雄厚的經濟基礎。從隋朝中葉到元代末年,由於統治者總結了歷代王朝傾覆的教訓,採取一系列開明政策,經濟得到了迅速發展,科學技術也得到了很大提高,而作為科學技術一部分的數學,也在此時進入了它的全盛時期。

3. 數學的發展歷史

數學的發展史大致可以分為四個時期。第一時期是數學形成時期,第二時期是常量數學時期,第三時期是變數數學時期,第四時期是現代數學時期。

1、數學形成時期。這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,認識了最基本的幾何形式,算術與幾何尚未慶哪余分開;

2、常量數學時期。這個時期的最基本,最簡單的成果構成了中學數學的主要內容,且逐漸形成了初等數學的主要分支,包譽滾括算數,幾何以及代數;

3、變數數學時期。變數數學產生於17世紀,它是數學的一個基礎學科,大體上經歷了兩個決定性的重大步驟。第一步是解析幾何的產生,第二步是微積分即高等數學中研究函數的微分,積分以及有關概念和應用的數學分緩運支;

4、現代數學。現代數學時期大致從19世紀上期開始。數學發展的現代階段的開端,以其所有的基礎,包括代數,幾何以及分析中的深刻變化為特徵。

4. 數學的發展歷程 200字以內

從人類誕生起,數學就誕生了,在古代人們用數學來計數,沒孝丈量土地,創立了簡單長度、面積、體積宴飢的丈量方法。在古代歐洲,歐幾里德創立幾何,至今為我們初中所學習。到十六世紀牛頓以後,幾何進入晌察返微積分時代,笛卡爾創立解析幾何,把代數與幾何結合起來,高斯創立數論,……,到今天起數學總共有一百多個分支,與人類的經濟、社會活動密不可分。

5. 數學發展的歷史介紹是什麼

數學發展的歷史介紹如下:

第一階段:數學的萌芽時期(公元前4000年—公元前六世紀)。

隨著遠古人類的發展,生活中慢慢涉及到數的應用,人類建立了最基本的數學概念。自然數出現了,有了簡單的計算,並認識了最基本最簡單的幾何圖形。

這一階段數學發展的傑出代表為古巴比倫數學、中國數學、埃及數學等。這個時期的數學知識大致相當於幼兒園和小學一二年級的內容,甚至比這個還要簡單。

第二階段:初等數學和常量數學時期(公元前6世紀—公元十六世紀末)。

隨著歷史的前進,數學也得到了極大發展。這一時期,希臘的數學家把數學向前推進了一大步。以歐幾里得的《幾何原本》為代表,引入了公理體系和嚴謹的證明,使數學變得更加完備,把數學由單純具體的測量得出結論變為嚴格的抽象證明。

畢達哥拉斯學派完整了勾股定理的嚴謹證明進而發現了無理數,也由此引發了第一次數學危機。這也使得數學從有理數發展到了無理數。

第三階段:變數數學階段(公元十七世紀—十九世紀中後期)。

這一階段也叫做近代數學階段,數學得到了飛速發展。而我國正處在閉關鎖國的大清王朝。

這一階段的標志是數學由常量轉變為變數,其發展有兩個里程碑。

第一個里程碑是解析幾何的誕生。1637年法國數學家笛卡爾發明了坐標系,創立了解析幾何,將變數引入數學,也把數字與圖形結合了起來,為微積分的開創奠定的基礎。

第二里程碑是微積分的創立。英國科學史上最偉大的人物—牛頓,從物理的運動入手,通過引入無窮小量的概念,於1669年提出了微積分的概念,為近代數學的發展提供力最有利的工具,開辟了數學的新紀元。更是把數學從靜態常量階段推向了動態變數的研究階段。

第四階段:現代數學時期(1874年以後)。

1874年德國數學康托創立了集合論,標志著現代數學時期的到來,同時也是純粹數學的開始。數學界三大巨頭龐加萊、克萊因、希爾伯特的出現,也預示著數學更加的抽象和純粹。也導致了實變函數、泛函分析、拓撲學和抽象代數四大抽象分支的崛起。

盡管由集合論所引發的第三次數學危機依然沒有解決,但我們相信,危機的到來依然是數學發展的動力,危機的解決一定會讓數學更上一層樓,這已經有前兩次數學危機所證實。當然了,這一階段的數學知識已經遠遠超出普通人所能理解的范圍,除了專門的數學人才,其他人估計一輩子也不會碰到更不會直接用到。

6. 簡述數學發展歷史

一)屬於算術方面的材料 大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中.乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載.中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來.「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當.」 和其他古代國家一樣,乘法表的產生在中國也很早.乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學.現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣. 現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣. 古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等.」這種以十的方冪來表示位率無疑地也是中國最早發現的. 小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 .在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究. 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一).楊輝還用「連身加」這名詞來說明201—300以內的質數. (二)屬於代數方面的材料 從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就. 「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容. 我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種.一元二次方程是借用幾何圖形而得到證明. 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年.具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金. 十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻. 在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了.四元術是天元術發展的必然產物. 級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數.十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄.十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法. 歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的. 內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算. 十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一. 就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著. (三)屬於幾何方面的材料 自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著.應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識. 中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的. 漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲). 圓和方的研究在古代中國幾何發展中佔了重要位置.墨子對圓的定義是:「圓,一中同長也.」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年. 在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名. 祖沖之所得的結果π=355/133要比歐洲早一千多年. 在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才. 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點. 中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果. 正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長.這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的). (四)屬於三角方面的材料 三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近. 劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值. 在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱). 十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式. 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線. 在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量.這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式.十八世紀以後,中國還出版了不少三角學方面的書籍.

7. 數的發展歷史,100字以內,詳細概括,挑重點,謝謝各位

公元3世紀,印度的一位科學家巴格達發明了阿拉伯數字。
公元500年前後,隨著經濟、文化以及佛教的興起和發展,印度次大陸西北部的旁遮普地區的數學一直處於領先地位。
771年,印度北部的數學家被抓到了阿拉伯的巴格達,被迫給當地人傳授新的數學符號和體系,以及印度式的計算物賣方法(即我們現在用的計演算法)。
至13世紀,在義大利比薩的數學家費婆拿契的虛螞搭倡導下,普通歐洲人也開始採用阿差拿拉伯數字,15世紀時這種現象已相當普遍。那時的阿拉伯數字的形狀與現代的阿拉伯數字尚不完全相同,只是比較接近而已,為使它們變成今天的1、2、3、4、5、6、7、8、9、0的書寫方式,又有許多數學家花費了不少心血。

8. 數學的發展歷史

搜狐博客 > 小雨兮兮 > 日誌 > 數學知識 2007-09-11 | 中國數學發展史概述 標簽: 數學 公元 九章算術 勾股定理 籌算

中國是世界文明古國之一,地處亞洲東部,瀕太平洋西岸。黃河流域和長江流域是中華民族文化的搖籃,大約在公元前2000年,在黃河中下游產生了第一個奴隸制國家——夏朝(前2033-前1562),共經歷十三世、十六王。其後又有奴隸制國家商(前562年—1066年,共歷十七世三十一王)和西周[前1027年—前771年,共歷約二百五十七年,傳十一世、十二王]。隨後出現了中國歷史上的第一次全國性大分裂形成的時期——春秋(前770年-前476年)戰國(前403年-前221年),春秋後期,中國文明進入封建時代,到公元前221年秦王贏政統一全國,出現了中國歷史上第一個封建帝制國家——秦朝(前221年—前206年),在以後的時間里,中國封建文明在秦帝國的封建體制的基礎不斷完善地持續發展,經歷了統一強盛的西漢(公元前206年—公元8年)帝國、東漢王朝(公元25年—公元220年)、戰亂頻仍與分裂的三國時期(公元208年-公元280年)、西晉(公元265年—公元316年)與東晉王朝(公元317年—公元420年)、漢民族以外的少數民族統治的南朝(公元420年—公元589年)與北朝(公元386年—公元518年)。到了公元581年,由隋再次統一了全國,建立了大一統的隋朝(公元581—618年),接著經歷了強大富庶文化繁榮的大唐王朝(公元618年—907年)、北方少數民族政權遼(公元916年-公元1125年)、經濟和文化發達的北宋(公元960年~公元1127年)與南宋(公元1127年-公元1279年)、蒙古族建立的控制范圍擴張至整個西亞地區的疆域最大的元朝(公元1271年-1368年)、元朝滅亡後,漢族人在華夏大地上重新建立起來的封建王朝——明朝(公元1368年-公元1644年),明王朝於17世紀中為少數民族女真族(滿族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中國最後一個封建帝制國家。自此之後,中國脫離了帝制而轉入了現代民主國家。

中國文明與古代埃及、美索不達米亞、印度文明一樣,都是古老的農耕文明,但與其他文明截然不同,它其持續發展兩千餘年之久,在世界文明史上是絕無僅有的。這種文明十分注重社會事務的管理,強調實際與經驗,關心人和自然的和諧與人倫社會的秩序,儒家思想作為調解社會矛盾、維系這一文明持續發展的重要思想基礎。

一、中國數學的起源與早期發展

據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。

算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。

用算籌記數,有縱、橫兩種方式:

表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間[法則是:一縱十橫,百立千僵,千、十相望,萬、百相當],並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。

籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。

在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理[西方稱勾股定理]的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。

戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。

此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。

二、中國數學體系的形成與奠基

這一時期包括從秦漢、魏晉、南北朝,共400年間的數學發展歷史。秦漢是中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。

現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。

西漢末年[公元前一世紀]編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。

《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年[公元前一世紀]。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。

魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。

南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。

公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。

同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。

三、中國數學教育制度的建立

隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。

隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》[包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》],作為算學館學生用的課本。對保存古代數學經典起了重要的作用。

由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。

唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。

四、中國數學發展的高峰

唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀[宋、元兩代],籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》[11世紀中葉],劉益的《議古根源》[12世紀中葉],秦九韶的《數書九章》[1247],李冶的《測圓海鏡》[1248]和《益古演段》[1259],楊輝的《詳解九章演算法》[1261]、《日用演算法》[1262]和《楊輝演算法》[1274-1275],朱世傑的《算學啟蒙》[1299]和《四元玉鑒》[1303]等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有:

公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。(《黃帝九章演算法細草》已佚)

公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。

公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。

公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。

公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。

公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。

公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。

五、中國數學的衰落與日用數學的發展

這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。

明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》[1592]問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。

六、西方初等數學的傳入與中西合璧

十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。

十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷[1607],其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》[2卷,1631]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷,1631]。在徐光啟主持編譯的《崇禎歷書》[137卷,1629-1633]中,介紹了有關圓椎曲線的數學知識。

入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》[53卷,1723],是一部比較全面的初等數學書,對當時的數學研究有一定影響。

七、傳統數學的整理與復興

乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。

在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》[約1859]中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷[1795-1810],開數學史研究之先河。

八、西方數學再次東進

1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷[1857],使中國有了完整的《幾何原本》中譯本;《代數學》13卷[1859];《代微積拾級》18卷[1859]。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷[1872],《微積溯源》8卷[1874],《決疑數學》10卷[1880]等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。

九、中國現代數學的建立

這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。

中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來[1915年轉留法],1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學[今南京大學]和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵[1927]、陳省身[1934]、華羅庚[1936]、許寶騤[1936]等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素[1920],美國的伯克霍夫[1934]、奧斯古德[1934]、維納[1935],法國的阿達馬[1936]等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。

1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊[1952年改為《數學學報》],1951年10月《中國數學雜志》復刊[1953年改為《數學通報》]。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。

建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》[1953]、蘇步青的《射影曲線概論》[1954]、陳建功的《直角函數級數的和》[1954]和李儼的《中算史論叢》5集[1954-1955]等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。

60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。

1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。

十、中國數學的特點

(1)以演算法為中心,屬於應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的。

(2)具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。

(3)寓理於算,理論高度概括。由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等。

十一、中國數學對世界的影響

數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。

中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展
世界的在參考資料

閱讀全文

與數學發展史總結怎麼寫相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1691
西安瑞禧生物科技有限公司怎麼樣 瀏覽:947
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1641
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050