⑴ 怎樣才能做好數學題目
1、上課前要調整好心態,一定不能想,哎,又是數學課,上課時聽講心情就很不好,這樣當然學不好!
2、上課時一定要認真聽講,作到耳到、眼到、手到!這個很重要,一定要學會做筆記,上課時如果老師講的快,一定靜下心來聽,不要記,下課時再整理到筆記本上!保持高效率!
3、
俗話說興趣是最好的老師,當別人談論最討厭的課時,你要告訴自己,我喜歡數學!
4、保證遇到的每一題都要弄會,弄懂,這個很重要!不會就問,不要不好意思,要學會舉一反三!也就是要靈活運用!作的題不要求多,但要精!
5、要有錯題集,把平時遇到的好題記下來,錯題記下來,並要多看,多思考,不能在同一個地方絆倒!!
總之,學時數學,不要怕難,不要怕累,不要怕問!
你能在這里問這個問題,說明你非常想把數學學好!相信你會成功的,加油吧!!!
⑵ 做數學應用題的技巧
高數學並不是簡簡單單就能學好,升入高中以後,高中數學變得更抽象了,很多知識同學們理解起來開始有困難了。那麼接下來給大家分享一些關於做數學應用題的技巧,希望對大家有所幫助。
做數學應用題的技巧
一.歸一問題解答含義及 方法
牢記題中的數量關系,仔細閱讀應用題給出的意思。
含義:
在解答應用題時,先要求出一份是多少(即單一量),然後以單一量為標准,求出所要求的數量。這類應用題叫做歸一問題。
數量關系:
總量÷份數=1份數量 1份數量×所佔份數=所求幾份的數量
另一總量÷(總量÷份數)=所求份數
解答思路及方法:
先求出單一量,以單一量為標准,求出所要求的數量。
二.歸總問題解答含義及方法
含義:
解題時,常常先找出「總數量」,然後再根據 其它 條件算出所求的問題,叫歸總問題。所謂「總數量」是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產量、幾小時行的總路程等。
數量關系:
1份數量×份數=總量 總量÷1份數量=份數
總量÷另一份數=另一每份數量
解題思路和方法: 先求出總數量,再根據題意得出所求的數量。
三.和差問題解答含義及方法
含義:
已知兩個數量的和與差,求這兩個數量各是多少,這類應用題叫和差問題。
數量關系:
大數=(和+差)÷ 2 小數=(和-差)÷ 2
解題思路和方法:
簡單的題目可以直接套用公式;復雜的題目變通後再用公式。
四.和倍問題解答含義及方法
含義:
已知兩個數的和及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做和倍問題。
數量關系:
總和 ÷(幾倍+1)=較小的數 總和 - 較小的數 = 較大的數
較小的數 ×幾倍 = 較大的數
解題思路和方法:
簡單的題目直接利用公式,復雜的題目變通後利用公式。
五.差倍問題解答含義及方法
含義:
已知兩個數的差及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做差倍問題。
數量關系:
兩個數的差÷(幾倍-1)=較小的數
較小的數×幾倍=較大的數
解題思路和方法:
簡單的題目直接利用公式,復雜的題目變通後利用公式。
六.倍比問題解答含義及方法
含義:
有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數,再用倍比的方法算出要求的數,這類應用題叫做倍比問題。
數量關系:
總量÷一個數量=倍數 另一個數量×倍數=另一總量
解題思路和方法:
先求出倍數,再用倍比關系求出要求的數。
高一數學 提分技巧
一、預習是聰明的選擇
最好老師指定預習內容,每天不超過十分鍾,預習的目的就是強制記憶基本概念。
二、基本概念是根本
基本概念要一個字一個字理解並記憶,要准確掌握基本概念的內涵外延。只有思維鑽進去才能了解內涵,思維要發散才能了解外延。只有概念過關,作題才能又快又准。
三、作業可鞏固所學知識
作業一定要認真做,不要為節約時間省步驟,作業不要自檢,全面暴露存在的問題是好事。
四、難題要獨立完成
想得高分一定要過難題關,難題的關鍵是學會三種語言的熟練轉換。(文字語言、符號語言、圖形語言)
五、加倍遞減訓練法
通過訓練,從心理上、精力上、准確度上逐漸調整到考試的最佳狀態,該訓練一定要在專業人員指導下進行,否則達不到效果。
六、考前不要做新題
考前找到你近期做過的試卷,把錯的題重做一遍,這才是有的放矢的 復習方法 。
七、良好心態
考生要自信,要有客觀的考試目標。追求正常發揮,而不要期望自己超長表現,這樣心態會放的很平和。沉著冷靜的同時也要適度緊張,要使大腦處於最佳活躍狀態
八、考試從審題開始
審題要避免「猜」、「漏」兩種不良習慣,為此審題要從字到詞再到句。
九、學會使用演算紙
要把演算紙看成是試卷的一部分,要工整有序,為了方便檢查要寫上題號。
十、正確對待難題
難題是用來拉開分數的,不管你水平高低,都應該學會繞開難題最後做,不要被難題搞亂思緒,只有這樣才能保證無論什麼考試,你都能排前幾名。
高一數學基礎差該怎麼學習
一、快速掌握基礎知識
對於基礎薄弱的同學來說,課本就是他們第一步需要掌握的提分法寶。想要提高數學成績,你需要記熟數學課本里的每一個知識點,看懂每一個例題,一章一章的進行掌握。
你可以先記公式,背熟之後在接著研究例題,最後去看課後習題,用例題和習題去思考該怎麼解,不要急著去計算,先想就好,然後在翻看課本看公式定理是怎麼推導的,尤其是過程和應用案例。對於課本中的典型問題,更是要深刻的理解,並學會解題後 反思 。這樣才能夠深刻理解這個問題,跳出題海這個怪圈。
做好錯題筆記,記錄容易犯的錯誤,分析錯誤的原因,找到正確的辦法。不要盲目的去做題,必須要在搞清楚概念的基礎上做這些才是有用的。
二、學會運用基礎知識
在掌握數學基礎知識的同時,要學會知識的運用,這樣你才能在考試中拿到分數。高中數學學習的特點是:速度快、容量大、方法多。而這對於基礎差的同學來說,有時聽了會記不住,或是記住了卻不會解題。這時候就需要我們把筆記記好,不需要一字不落的記下老師說的話,只需要把關鍵的思路和結論記下來就可以了,課後在去整理、回看筆記,這也是再學習的一個過程。
想要學好數學題就必須要多做題,只有做了一定題目才能學好數學,而且做題是高中數學學習的主旋律。但是這里的做題不是盲目做題,而是要看題思考,學會思考、反思、 總結 才是學習數學的王道。
其實數學解題並不難,分析題干,挖掘已知條件,尋找這些條件之間有什麼關系,得出一個有用的結論,這個結論是我們所要用來解決問題的關鍵,這就是數學解題的形式。所以想要學好數學,主要靠的是答題的思路,而不是作出某道題的方法。
做數學應用題的技巧相關 文章 :
★ 做數學應用題的技巧
★ 做數學應用題時的方法高中
★ 六年級數學應用題解題技巧(3)
★ 初中數學應用題解題方法與技巧
★ 應用題初中數學重點解題技巧有哪些
★ 初中數學應用題重點解題技巧
★ 小學數學應用題解題方法
★ 做小學數學作業各類題型的方法
★ 六年級數學應用題解題基本思路
⑶ 數學做題的方法及技巧
數學做題的方法及技巧
數學做題的方法及技巧,數學一直都是令許多學生頭疼的科目,在考試中我們只能盡量做到不會做的題目也能得分,甚至蒙出正確的答案,只要掌握一定的數學答題技巧,也是有可能實現的,接下來一起看看數學做題的方法及技巧。
一、熟悉習題中所涉及的內容,包括定義、公式、定理和規則。
解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。
因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。
二、熟悉習題中所涉及到的以前學過的知識,以及與其他學科相關的知識。
有時候,我們遇到一道不會做的習題,不是我們沒有學會現在汪段所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。
這時,我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。
三、熟悉基本的解題步驟和解題方法。
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。
選擇題蒙法
1、選擇題出現數值的選項中,含最多相同數值的選項為正確答案。如四個選項:A、3 B、3/11 C、3/13 D、2/11。「3」和「11」出現的次數最多,故選選項B。
2、選擇題出現數值的選項中,數值最大的和數值最小的一般不是正確選項,答案從中間數值的兩個選項中選。
3、選擇題出現正負數值的選項中,答案必定是那兩個選項的其中之一。
4、選擇題中,若出現概念題。如果有課外的或是課內很少見的說法,一般都是正確的說法。
5、選擇題,不會連續出現3個相同的答案。一般而言,選項A出現的概率最低。而且,第一題和最後一題一般不為選項A,最後兩道題多為選項B和選項C。
填空題蒙法
1、如果出現求長度或者求角度的選擇題,並且試卷上有圖像的。可以直接用刻度尺或者量角器去衡量。
2、有關線性規劃的選擇題,不用畫圖,直接計算。用時更短,准確率更高!
3、遇上求數值、實在不會做的選擇題。如果明顯是整數答案的,可以選寫「0、1、-1」中的其中一個數值;如果明顯是分數答案的.,可以選寫「1/2、1/3、2/3」中的其中一個數值;如果明顯是含根號值數答案的,可以選寫「根號2、根號3「等簡單的數值。
4、一般來說,題目復雜難懂的,答案的數值往往是很簡單的。反之就是比較茄陵拆復雜的。
解答題蒙法
1,證明題中,如果有某一個結論實在不知道怎麼推導出來,可以把題目中所有的條件抄一遍,然後直接寫出你想要的結論即可(情況好的話一分不扣!情況不好的話,也就扣一些步驟分)
2,證明題中,第二第三題可以直接引用第一題的結論(即使第一題是要你證明的結論,你沒有證顫棗明出來也可以用!)
3、一般而言,壓軸題的第三小問,都要用第一小題中的結論。(所以,壓軸題的第三小問,即使做不出來,也要把第一小題中的結論寫上去,可以得一到兩分的步驟分!)
4、空間幾何證明題中,即使不會證明,也要建立空間直角坐標系,並寫上你建系時的套話。
5、實在一點兒都不會做的題目,把所有你覺得用得上的、跟本題有關的公式定理都寫上去。並且,每一小題都要重復寫上(意思就是:第一小題寫了,第二、第三小題也要寫!)
數學答題技巧
1.適用條件
[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大於1。
註:上述公式適合一切圓錐曲線。如果焦點內分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。
2.函數的周期性問題(記憶三個)
(1)若f(x)=-f(x+k),則T=2k;
(2)若f(x)=m/(x+k)(m不為0),則T=2k;
(3)若f(x)=f(x+k)+f(x-k),則T=6k。
注意點:a.周期函數,周期必無限b。周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。
3.關於對稱問題(無數人搞不懂的問題)總結如下
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恆成立,對稱軸為x=(a+b)/2
(2)函數y=f(a+x)與y=f(b-x)的圖像關於x=(b-a)/2對稱;
(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關於(a,b)中心對稱
4.函數奇偶性
(1)對於屬於R上的奇函數有f(0)=0;
(2)對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項
(3)奇偶性作用不大,一般用於選擇填空
5.數列爆強定律
(1)等差數列中:S奇=na中,例如S13=13a7(13和7為下角標);
(2)等差數列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
(3)等比數列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立
(4)等比數列爆強公式:S(n+m)=S(m)+qmS(n)可以迅速求q
6.數列的終極利器,特徵根方程
首先介紹公式:對於an+1=pan+q(n+1為下角標,n為下角標),
a1已知,那麼特徵根x=q/(1-p),則數列通項公式為an=(a1-x)p(n-1)+x,這是一階特徵根方程的運用。
二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數列可以構造(兩邊同時加數)
⑷ 如何快速做數學題
快速做數學題的方法如下:
1,你要非常努力,孰能生巧嘛,看到數學題,就知道怎麼做了,那都是練出來的。
2,你要非常聰明,聰明到別人要非常努力才能做到的事情,你學學玩玩也可以做得到。
3,你寫字也要非常快。畢竟想到了也要寫出來的嘛。
第一種就是學霸,第二種就是學神。至於其他的快捷的辦法,那就算了吧,不可能有的。
⑸ 如何做好數學題呢
如何學好數學1
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技碧悉轎能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老悔肆師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題陸春目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2
高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。
至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
答一送一:
如何在學習上占第一
學習上占第一,每個同學都可以做到。之所以你占不了第一,主要有兩個原因:第一、生活方式、學習方法不正確,第二、沒有堅強的毅力。在這裡面毅力是第一重要的,學習方法是第二重要的。在現實生活中,全中國仍有70%以上的占第一的學生雖然佔了第一,但他們並不是毅力最強的,或者說學習方法生活方式不是最好的。他們也許今天是第一,明天就不是了。也就是說,你如果按占第一的方法去學習、去鍛煉,一般都會超過現有的第一。
輝煌的第一是不是要經過艱苦的努力才能得到呢?說它艱苦是因為「培養堅強的毅力」是世上最艱苦的工作,只有你具有了堅強的毅力才可能成為第一,當然正確的生活方式和學習方法也是特別重要的。在這里什麼是堅強的毅力呢,只要你能按下面幾點要求去做,而且每天都做記錄,持之以恆,每天都不間斷地堅持一個學期、一年、三年,那麼你的毅力就足以達到占第一的要求了。在這項鍛煉中就怕你中間有間斷,風雨、心情、疾病、家務等等都不是你中斷鍛煉的理由。你要記住,學好學業是你學生生活中最重要的,沒有什麼工作的重要性會超過它。除了堅強的毅力,正確的學習方法和生活方式也是很重要的。
第一人人可以占,原來占第一的同學也不一定就比你更聰明多少,腦細胞也不一定比你多。愛迪生不是說過「天才是百分之九十九的汗水加上百分之一的靈感」嗎?!所以你第一要過心理關,就是說:要堅信你一定能成功,一定會超過現有的第一,包括現在是第一的你自已。
第二、你要天天鍛煉。沒有一個健康的身體,你什麼事也做不好,即使偶爾做好了,也不能長久。每天30分鍾左右的鍛煉一定要天天堅持。鍛煉的形式多種多樣,跑步、打乒乓球、打籃球、俯卧撐、立定跳遠等等都可以。有些同學好面子,見到別人不跑步,怕自已跑別人看見了不好意思,那就錯了,真正不好意思的是辛苦了幾年考不上大學,是上了幾年大學還要下崗。如果將來自已養活不了自已,那才是真正不好意思的。
第三、學習態度要端正。每次上課前,一定要把老師准備講的內容預習好,把不好理解的、不會的內容做好標記,在老師講到該處時認真聽講。如果老師講了以後還不會,一定要再問老師,直到明白為止。當一個問題問了兩遍三遍還不會時,一般的同學就不好意思問了,千萬別這樣,老師們最喜歡「不問明白誓不罷休」的性格了。上課時要認真聽講,認真思考,做好筆記。做筆記時一定要清楚,因為筆記的價值比課本還,將來的復習主要靠它。
課下首先要做的不是做作業,而是把筆記、課本上的知識點先學好,該記的內容一定把它背熟。這樣會大大提高你做作業的速度,即平常說的「磨刀不誤砍柴功」。做作業時應該獨立思考,實在不能解決的問題,再和同學、老師商量。問同學時,不要問這道題結果是什麼,而是要問「這道題究竟怎麼做?」「這道題為什麼這樣做?」
第四、正確面對錯誤和失敗。當有的知識你沒有在課上學會、當你的練習做錯時或者在考試中成績太差時,你既不要報怨,也不要氣餒,你應該正視這自已不願得到的現實。沒有學會不要緊,把該知識寫到你的《備忘錄》中,然後問同學問老師,再把正確的解釋或結果,寫到其它頁上。錯了題也是這樣,考試失利不就是錯的題多點嗎,正確的方法是把原題抄到《備忘錄》中,把正確的做法學會後,把做法和結果寫到其它頁上,如果能註上做該類題的注意事項,就會把你的學習效率又提高30%-60%。之所以把答案或解釋寫到其它頁上,就是為了下次看知識點或錯誤的題目時,再動動腦筋,想想該知識點的理解和解釋情況,再練練該題的做法和答案。錯誤和失敗並不可怕,只要你能正視它,一切都會成為你成功的動力。
第五、記帳。你的學習一定要有一本帳,你什麼時候做得好,記下來,什麼時候錯了題,記下來(註:帳本上只記「今天錯題為《備忘錄》××頁×題)。課下幾點幾分學了英語,記錄好;幾點幾分至幾點幾分學了物理記下來。把你生活中鍛煉、學習的分分秒秒記錄在你的帳本上,把你每次作業和考試中的正確題數、錯誤題數和錯誤題號(《備忘錄》上的頁號題號)一一記錄在你的帳本上。把你每天學會的知識點都記錄在帳本上,以備明天、後天再檢查一下自已是否真正掌握了這些知識點。在帳本上過去了幾天的知識點,你一定要學會並能熟練掌握。
帳本記錄的是你學習、鍛煉中每一個細節。這樣記下來,在校生活中,每天約有一頁32開紙的記錄量,不在校時可能有兩頁32紙的記錄量。在星期和假期里千萬不能間斷。把你的帳一天天積累起來,這就是你所走過的第一之路。
雖說在素質教育的今天學校不排名次,但學習出類拔萃是我們努力的目標,是我們考上高一級學校的必要條件,也是我們走向社會後,做好每一件工作的資本。同學們,去爭取第一吧。如果你一年年按上面的要求做,你一定能占第一。
如果大家都這樣去做,即使你占不了第一,一定是中國出類拔萃的學生,因為中國大多數的同學沒有這樣的毅力,沒有這樣好的學習方法和生活方式。同學們,為美好的明天奮斗吧!
===============================================
首先要有學習數學的興趣。兩千多年前的孔子就說過:「知之者不如好之者,好之者不如樂之者。」這里的「好」與「樂」就是願意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:「在學校里和生活中,工作的最重要動機是工作中的樂趣。」學習的樂趣是學習的主動性和積極性,我們經常看到一些同學,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想像,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇後,它是學習科學知識和應用科學知識必 的工具。可以說,沒有數學,也就不可能學好其他學科;其次必須有鑽研的精神,有非學好不可的韌勁,在深入鑽研的過程中,就可以 略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,並激發出學好數學的高度自覺性和積極性。
有了學習數學的興趣和積極性,要學好數學,還要注意學習方法並養成良好的學習習慣。
知識是能力的基礎,要切實抓好基礎知識的學習。數學基礎知識學習包括概念學習,定理公式學習以及解題學習三個方面。學習數學概念,要善於抓住它的本質屬性,也就是區別於這個概念和其他概念的屬性;學習定理公式,要緊緊抓住定理方向的內在聯系,抓住定理公式適用的范圍及題型,做到得心應手地應用這些定理公式,數學解題實№上是在熟練掌握概念與定理公式的基礎上解決矛盾,完成從「未知」向「已知」的轉化。要著重學習各種轉化方式,培養轉化的能力。總而言之,在學習數學基礎知識中,要注意把握知識的整體精髓, 悟其中的規律和實質,形成一個緊密聯系的整體認識體系,以促進各種形式間的相互遷移和轉化。同時,還要注意知識形成過程無處不隱含著人們在教學活動中解決問題的途徑、手段和策略,無處不以數學思想、方法為指南,而這也是我們學習知識時最希望要學到的東西。
數學思想方法是知識、技能轉化為能力的橋粱,是數學結構中強有力的支柱,在中學數學課本里滲透了函數的思想,方程的思想,數形結合的思想,邏輯劃分的思想,等價轉化的思想,類比歸納的思想,介紹了配方法、消元法、換元法、待定系數法、反證法、數學歸納法等,在學好數學知識的同時,要下大力氣理解這些思想和方法的原理和依據,並通過大量的練習,掌握運用這些思想和方法解決數學問題的步驟和技巧。
在數學學習中,要特別重視運用數學知識解決實№問題能力的培養。數學社會化的趨勢,使得「大眾數學」的口號席捲整個世界,有人認為未來的工作崗位是為已作好數學准備的人才提供的,這里所說的「已作好了數學准備」並不僅指懂得了數學理論,更重要的是學會了數學思想,學會了將數學知識靈活運用於解決現實問題中。培養數學應用能力,首先要養成將實№問題數學化的習慣;其次,要掌握將實№問題數學化的一般方法,即建立數學模型的方法,同時,還要加強數學與其他學科的聯系,除與傳統學科如物理、化學聯系外,可適當了解數學在經濟學、管理學、工業等方面的應用。
如果我們在數學學習中,既扎扎實實地學好了數學知識和技能,又牢固地掌握了數學思想和方法,而且能靈活應用數學知識和技能解決實№問題,那麼,我們就走在了一條數學學習成功的大道上。
⑹ 數學做題的方法及技巧
考試做題的最高境界是什麼?不是全部題目都會做,而是不會做的題目也能得分、甚至蒙出答案能得滿分!在中考和高考的獨木橋上,流行著「提高一分,幹掉千人」的說法。那麼學會下面的「蒙題」技巧,老師保證你的數學肯定不僅僅提高一分。廢話少說,步入正題!
03
解答題蒙法
1,證明題中,如果有某一個結論實在不知道怎麼推導出來,可以把題目中所有的條件抄一遍,然後直接寫出你想要的結論即可(情況好的話一分不扣!情況不好的話,也就扣一些步驟分)
2,證明題中,第二第三題可以直接引用第一題的結論(即使第一題是要你證明的結論,你沒有證明出來也可以用!)
3、一般而言,壓軸題的第三小問,都要用第一小題中的結論。(所以,壓軸題的第三小問,即使做不出來,也要把第一小題中的結論寫上去,可以得一到兩分的步驟分!)
4、空間幾何證明題中,即使不會證明,也要建立空間直角坐標系,並寫上你建系時的套話。
5、實在一點兒都不會做的題目,把所有你覺得用得上的、跟本題有關的公式定理都寫上去。並且,每一小題都要重復寫上(意思就是:第一小題寫了,第二、第三小題也要寫!)
⑺ 做數學題的方法和技巧
中小學數學,還包括思維數學,在學習方面要求方法適宜,有了好的方法和思路,可能會事半功倍!那有哪些方法可以依據呢?文都教育建議家長們,培養孩子從小就習慣用這些思維和方法來解題!
形象思維方法
形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。
形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。
實物演示法
利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。
這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。
二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。
特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎。
所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。
圖示法
藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。
圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果。比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解。
在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。
列表法
運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便於分析比較、提示規律,也有利於記憶。它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」。
用列表法解決傳統數學問題:雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。
探索法
按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。
第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。
第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。
第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。
觀察法
通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」
小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出
乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。
「觀察」的要求:
第一、觀察要細致、准確。
第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。
驗證法
你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。
驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。
(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。
(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。
(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)
按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。
(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。
抽象思維方法
運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。
抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。
小學、中學數學要培養學生初步的抽象思維能力,重點突出在:
(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。
(2)思維方法上,應該學會有條有理,有根有據地思考。
(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。
(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地
推理。
對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯系與區別,這是比較的實質。
(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。
(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
排除法
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
解題技巧
選擇題答題攻略
1、剔除法
利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。
2、特殊值檢驗法
對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
3、極端性原則
將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。
4、順推破解法
利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。
5、逆推驗證法
將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。
6、正難則反法
從題的正面解決比較難時,可從選項出發逐步逆推找出符合條件的結論,或從反面出發得出結論。
7、數形結合法
由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。
8、遞推歸納法
通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。
9、特徵分析法
對題設和選擇項的特點進行分析,發現規律,歸納得出正確判斷的方法。
10、估值選擇法
有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
填空題答題攻略
數學填空題,絕大多數是計算型(尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。
1、直接法
這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。
2、特殊化法
當填空題的結論唯一或其值為定值時,我們只須把題中的參變數用特殊值(或特殊函數、特殊角、特殊數列、圖形特殊位置、特殊點、特殊方程、特殊模型等)代替之,即可得到結論。
3、數形結合法
藉助圖形的直觀形,通過數形結合,迅速作出判斷的方法稱為圖像法。文氏圖、三角函數線、函數的圖像及方程的曲線等,都是常用的圖形。
4、等價轉化法
通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出正確的結果。
⑻ 做數學題的方法
1、學數學最重要的就是解題能力
要想會做數學題目,就要有大量的練習積累,知道各類型題目的解題步驟與方法,題目做多了就有手感了,再拿出類似的題目才會有解題思路。
2、其次是學會預習
解題思路不是直接就有的,也並非通過做幾道簡單的題目就能輕易獲得,而是在預習過程中不斷積累出來的。因此,預習在數學學習過程中起到了非常重要的作用。預習一方面能夠讓大家提前對數學知識有所了解,另一方面能夠培養數學獨立學習能力。
3、學數學必須多做題
理解了數學基本定義和知識點以後,就需要通過做對應習題去鞏固知識,多做多練才能更好地掌握所學知識,學數學也是看花容易綉花難的,只有真正動手去做題、經歷了實操過程能學會。
4、做完題要學會總結
對於做過的題型及做錯的題目要善於進行分類總結,再遇到類似的題目要會分析,知道哪裡容易出現問題,然後盡量去避免。同時在做題和總結過程中,要學會舉一反三,抓住考點去復習。
5、學數學要會看書和查缺補漏
數學基礎考點都來源於課本,大家之所以覺得書沒什麼可看,是因為對教材掌握程度不夠。書上的每個定義都要理解後倒背如流,深究每個詞語的含義,做懂每個例題,會推導數學公式及變形公式。
做數學題目方法不唯一,只要是邏輯合理、能一步步推導出結論的方法都可以,不必拘泥於老師講授的方法。做數學小題也可以採用畫圖、試值法、代入法等去做,只要沉下心去研究,功夫不負有心人,數學總能夠學好。