A. 初三數學上冊第一章的知識總結(北師大)
第1章~第5章的基礎知識
三. 課堂教學:
[基礎知識]
知識結構一:
你能證明它們嗎
1. 全等三角形的判定
三邊對應相等的兩個三角形全等。(SSS)
兩邊及其夾角對應相等的兩個三角形全等。(SAS)
兩角及其夾邊對應相等的兩個三角形全等。(ASA)
兩角及其一角的對邊對應相等的兩個三角形全等。(AAS)
2. 全等三角形的性質
全等三角形的對應邊相等,對應角相等。
3. 等腰三角形的判定
有兩個角相等的三角形是等腰三角形雹圓。(簡稱:等角對等邊)
4. 等腰三角形的性質
等腰三角形的兩個底角相等。(簡稱:等邊對等角)
等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合。(簡稱:三線合一)
5. 等邊三角形的判定
①三禪燃邊相等的三角形是等邊三角形
②有一個角是60°的等腰三角形是等邊三角形
③三個角相等(都是60°)的三角形是等邊三角形
6. 直角三角形的性質
(1)在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半。
逆定理:在直角三角形中,源襲塌如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的銳角等於30°
(2)直角三角形斜邊上的中線等於斜邊的一半。
逆定理:如果一個三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
7. 反證法。
先假設命題的結論不成立,然後推導出與定義、公理、已證定理或已知條件相矛盾的結果,從而證明命題的結論一定成立,這種證明方法稱為反證法。
..........
B. 九年級上冊數學第一章知識框架
一、梳理知識:
1、全等三角形
(1)定義: 能夠完全 的三角形是全等三角形。
(2)性質:好襪全等三角形的 、 相等。
(3)判定:"SAS"、 、 、 、 。
2、等腰三角形
(1)定義:有兩條 的三角形是等腰三角形。
(2)性質:①等腰三角形的 相等。("等邊對等角")
②等腰三角形的頂角平分線、 、 互相重合。( )
③等腰三角形是 圖形。
(3)判定:①定義 ②" "
(4)等邊三角形 定義: 的三角形是等邊三角形。
性質:①三角都等於 ②具有等腰三角形的一切性質。
判定:①定義 ②有一個角 是等邊三角形。
3、直角三角形
(1)定義:有一個角是 的三角形是直角三角形。
(2)性質:①"勾股定理" 。
②直角三角形兩銳角 。
③直角三角形斜邊上的中線等於 。
④在直角三角形中,30°角所對直角邊等於 。
(3)判定:①定義 ②兩銳角 的三角形是直角三角形
③"勾股定理逆定理" 。
4、角平分線
(1)定義: 。
(2)性質:①角平分線上的點 相等。
②三角形的三條角平分線 ,且到 相等。
(3)判定:到角的兩邊 的點,在這個角的平分線上。
(4)角平分線的作法:
5、線段的垂直平分線
(1)定義: 一條線段的 叫線段的垂直平分線。
(2)性質:①線段垂直平分線上一點 相等。
②三角形三邊的垂直平分線 ,且到 相等。
(3)判定:到一條線段兩個端點 的點,在這條線段的垂直平分線上。
(4)線段的垂直平分線的作法:
6、命題:判斷一件事的句子叫命題。命題有 與 兩部分。
互逆命題:在兩個命題中,如果一個命題的 是另一個命題的
,那麼這兩個命題成為互逆命題,其中一個命題稱為另一個命題的 。
7、逆定理:如果一個定理的逆命題是真命題,那麼這個逆命題就叫原定理的逆定理.
二、典型例題:
一、選擇題
1、到△ABC的三條邊距離相等的點是△ABC的( )
A.三邊中線的交點 B.三條角平分線的交點C.三邊上高的交點 D.三邊中垂線的交點
2、已知等腰三角形的兩邊長分別為4㎝和2㎝,則其周長是( )
A. 6㎝ B. 10㎝ C. 10㎝或8㎝ D. 8㎝
3、如圖,從等腰△ABC底邊BC上任意一點分別作兩腰的平行線DE、DF,分別交AC、AB於點E、F,則□AFDE的周長等於這個等腰三角形的( )
A. 周長 B. 周長的一半
C. 一條腰長的2倍 D. 一條腰長
嶗山八中九年級數學復習課導學案
課題
證明(二)
課型
復習課
課時
1
復習目標
1、 能准確的找出兩個三角形的等量關系,證明兩個三角形全等;
2、 靈活運友核激用各性質解決實際問題。
重點、難點、考點
1、 等腰三角形、等邊三角形的性質和判定
2、 理解題意,把握題目中的每個量
3、 線段垂直平分線的做法,角平分線的做法利用等腰三角形、線段垂直平分線、角平分線的性質靈活解題
教法
分層設計,先寫後說,互動交流
學法指導
一、課前准備
1、等腰三角形的性質:邊 ;角 ;敘述三線合一的內容 。
2、等邊三角形的性質:邊 ;角 。
3、判定等腰三角形的方法有:邊 角 。
4、判定等邊三角形的方法氏飢有:邊 角 。
5、線段垂直平分線的性質定理:
逆定理:
已知線段AB,用直尺和圓規作出它的垂直平分線:
三角形的垂直平分線性質:
6、角的性質定理:
逆定理:
已知角ABC,用直尺和圓規作出它的角平分線:
三角形的角平分線性質:
7、三角形全等的判定方法有 。
8、說出「等腰三角形的兩底角相等」的逆命題是 。
學習困惑記錄
二、課堂復習
一、等腰三角形
1、已知,等腰三角形的一條邊長等於,另一條邊長等於,則此等腰三角形的周長是( )A.B. C. D.或
2.等腰三角形的底角為15°,腰上的高為16,那麼腰長為__________
3、等腰三角形的一個角是80度,則它的另兩個角是
4、(選作)△ABC中,D,E分別是AC,AB上的點,BD與CE交於點O,給出下列四個條件:
①∠EBO=∠DCO ②∠BEO=∠CDO ③BE=CD ④OB=OC
[1]上述四個條件中,哪兩個條件可以判定△ABC是等腰三角形(用序號寫出)
[2]選擇第[1]小題中的一種情形,證明△ABC是等腰三角
二、等邊三角形
1、如圖:等邊三角形ABC中,D為AC的中點,E為BC延長線上一點,且DB=DE,若△ABC的周長為12,則△DCE的周長為___________.
三、垂直平分線
1、如圖1,在△ABC中,已知AC=27,AB的垂直平分線交AB於點D,交AC於點E,△BCE的周長等於50,求BC的長.
2、(選作)如圖:△ABC中,AB=AC,∠BAC=1200,EF垂直平分AB,EF=2,求AB與BC的長。
四、角平分線
1、如圖,在△ABC中,∠C=90°,∠A的平分線交BC於E,DE⊥AB於D,BC=8,AC=6,AB=10,則△BDE的周長為_________。
2、.如左下圖,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB於D,如果AC=3 cm,那麼AE+DE等於
A.2 cm B.3 cm C.4 cm D.5 cm
3.如右圖,已知BE⊥AC於E,CF⊥AB於F,BE、CF相交於點D,若BD=CD.求證:AD平分∠BAC.
五、三角形全等
1、如圖:已知P,O是線段CD垂直平分線上的點,A,B分別是射線OC,OD上的點,且PC⊥OA,PD⊥OB,垂足分別是C,D.
求證:[1]OC=OD
[2]OP平分∠AOB
2、.如圖:在△ABC中,
AD,CE分別是△ABC的高,
請你再加一個___________
條件
即可使△AEH≌△CEB。
六、命題
1. 命題「直角三角形斜邊上的中線等於斜邊的一半」,其逆命題是
_____________________________________.它是一個__________命題。
2.下列各語句中,不是真命題的是
A.直角都相等
B.等角的補角相等
C.點P在角的平分線上
D.對頂角相等
3、.下列命題中是真命題的是
A.有兩角及其中一角的平分線對應相等的兩個三角形全等
B.相等的角是對頂角
C.餘角相等的角互余
D.兩直線被第三條直線所截,截得的同位角相等
七、綜合
小軍和小強互相編數學題考察對方:
(1)小軍編題:將含有45度角的的直角三角板和直尺如圖擺放在桌子上,然後分別過A、B兩個頂點向直尺作了兩條垂線段AD,BE。
問題[1]:你能發現並證明這個圖形中的全等三角形嗎?
[2]:你能發現並證明線段AD,BE,DE之間的關系嗎?
小強順利的做出了解答,你也來試試吧!
(2)小強借題發揮,將直尺位置稍作改變,以相同的問題問小軍,你能幫助小軍做出正確解答嗎?
(3)在小強和小軍所編的題目中用到了你所學過的哪些定理?
隨時糾錯
三、小結反饋
1、在三角形內部,有一個點P到三角形三個頂點的距離相等,那麼P點一定是( )
A.這個三角形的三條邊的垂直平分線的交點。
B.這個三角形三條中線的交點。
C.這個三角形三角角平分線的交點
D.這個三角形三條高的交點
如圖,P是∠AOB平分線上的一點,PC⊥OA,PD⊥OB,垂足分別是C、D
求證:①OC=OD
②OP是CD的垂直平分線
說明:第②問可以一題多解。一是可以利用等腰三角形三線合一,二是因為PC=PD,OC=OD,所以得以證明(根據的是兩點確定一條直線)