㈠ 高中數學題型與解題技巧
常見高中數學幾類題型解題技巧
選擇題
對選擇題的審題,主要應清楚:是單選還是多選,是選擇正確還是選擇錯誤?答案寫在什麼地方,等等。
做選擇題有四種基本方法:
1 回憶法。直接從記憶中取要選擇的內容。
2 直接解答法。多用在數理科的試題中,根據已知條件,通過計算、作圖或代入選擇依次進行驗證等途徑,得出正確答案。
3 淘汰法。把選項中錯誤中答案排除,餘下的便是正確答案。
4 猜測法。計算證明題
解答這種題目時,審題顯得極其重要。只有了解題目提供的條件和隱含的信息,確定具體解題步驟,問題才能解決。在做這種題時,有一些共同問題需要注意:
1 注意完成題目的全部要求,不要遺漏了應該解答的內容。
2 在平時練習中要養成規范答題的習慣。
3 不要忽略或遺漏重要的關鍵步驟和中間結果,因為這常常是題答案的采分點。
4 注意在試卷上清晰記錄細小的步驟和有關的公式,即使沒能獲得最終結果,寫出這些也有助於提高你的分數。
5 保證計算的准確性,注意物理單位的變換。應用性問題的審題和解題技巧 新教學大綱指出:要增強用數學的意識,一方面通過背景材料,進行觀察、比較、分析、綜合、抽象和推理,得出數學概念和規律,另一方面更重要的是能夠運用已有的知識將實際問題抽象為數學問題,建立數學模型。近幾年的數學高考加大了應用性試題的考查力度,數量上穩定為兩小一大;質量上更加貼近生產和生活實際,體現科學技術的發展,更加
貼近中學數學教學的實際。解答應用性試題,要重視兩個環節,一是閱讀、理解問題中陳述的材料;二是通過抽象,轉換成為數學問題,建立數學模型。函數模型、數列模型、不等式模型、幾何模型、計數模型是幾種最常見的數學模型,要注意歸納整理,用好這幾種數學模型。
最值和定值問題的審題和解題技巧 最值和定值問題
最值和定值是變數在變化過程中的兩個特定狀態,最值著眼於變數的最大�小 值以及取得最大�小 值的條件;定值著眼於變數在變化過程中的某個不變數。近幾年的數學高考試題中,出現過各種各樣的最值問題和定值問題,選用的知識載體多種多樣,代數、三角、立體幾何、解析幾何都曾出現過有關最值或定值的試題,有些應用問題也常以最大�小 值作為設問的方式。分析和解決最值問題和定值問題的思路和方法也是多種多樣的。命制最值問題和定值問題能較好體現數學高考試題的命題原則。應對最值問題和定值問題,最重要的是認真分析題目的情景,合理選用解題的方法。
參數兼有常數和變數的雙重特徵,是數學中的「活潑」元素,曲線的參數方程,含參數的曲線方程,含參變系數的函數式、方程、不等式等,都與參數有關。函數圖象與幾何圖形的各種變換也與參數有關,有的探究性問題也與參數有關。參數具有很強的「親和力」,能廣泛選用知識載體,能有效考查數形結合、分類討論、運動變換等數學思想方法。應對參數問題要把握好兩個環節,一是搞清楚參數的意義�幾何意義、物理意義、實際意義等 ,特別是具有幾何意義的參數,一定要運用數形結合的思想方法處理好圖形的幾何特徵與相應的數量關系的相互聯系及相互轉換。二是要重視參數的取值的討論,或是用待定系數法確定參數的值,或是用不等式的變換確定參數的取值范圍。
代數證明題的審題和解題技巧代數證明題
近幾年的數學高考注意控制立體幾何試題的難度,推理論證能力的考查重點轉移到代數與解析幾何�特別是代數證明題。函數的性質及相關函數的證明題;數列的性質及相關數列的證明題;不等式的證明題,尤其是與函數或數列相綜合的不等式的證明題等,都頻頻出現在近幾年的數學高考試題之中。應對代數證明題,一是要全面審視各相關因素的關系,注意題目的整體結構;二是要完整、准確表述推理論證的過程,對於具有幾何意義的代數證明題,要妥善處理幾何直觀、數式變換及推理論證的關系,注意防止簡單運用「如圖可知」替代推理論證。
探究性題的審題和解題技巧
探究性問題
近幾年的數學高考貫徹了「多考一點想,少考一點算」的命題意圖,加大試題的思維量,控制試題的運算量,突出對數學的「核心能力」——思維能力的考查。有些試題設計了新穎的情景,有些試題設計了靈活的設問方式,有些試題設計了新的題型結構�如存在性問題;發現結論且證明結論的問題;尋求並證明充分條件或必要條件的問題等 ,這樣的試題有助於克服死記硬背和機械照搬,優化考查功能。應對探究性問題要審慎處理「閱讀理解」和「整體設計」兩個環節,首先要把題目讀懂,全面、准確把握題目提供的所有信息和題目提出的所有要求,在此基礎上分析題目的整體結構,找好解題的切入點,對解題的主要過程有一個初步的設計,再落筆解題。在思維受阻時,及時調整解題方案。切忌一知半解就動手解題。
㈡ 做數學應用題的技巧
高數學並不是簡簡單單就能學好,升入高中以後,高中數學變得更抽象了,很多知識同學們理解起來開始有困難了。那麼接下來給大家分享一些關於做數學應用題的技巧,希望對大家有所幫助。
做數學應用題的技巧
一.歸一問題解答含義及 方法
牢記題中的數量關系,仔細閱讀應用題給出的意思。
含義:
在解答應用題時,先要求出一份是多少(即單一量),然後以單一量為標准,求出所要求的數量。這類應用題叫做歸一問題。
數量關系:
總量÷份數=1份數量 1份數量×所佔份數=所求幾份的數量
另一總量÷(總量÷份數)=所求份數
解答思路及方法:
先求出單一量,以單一量為標准,求出所要求的數量。
二.歸總問題解答含義及方法
含義:
解題時,常常先找出「總數量」,然後再根據 其它 條件算出所求的問題,叫歸總問題。所謂「總數量」是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產量、幾小時行的總路程等。
數量關系:
1份數量×份數=總量 總量÷1份數量=份數
總量÷另一份數=另一每份數量
解題思路和方法: 先求出總數量,再根據題意得出所求的數量。
三.和差問題解答含義及方法
含義:
已知兩個數量的和與差,求這兩個數量各是多少,這類應用題叫和差問題。
數量關系:
大數=(和+差)÷ 2 小數=(和-差)÷ 2
解題思路和方法:
簡單的題目可以直接套用公式;復雜的題目變通後再用公式。
四.和倍問題解答含義及方法
含義:
已知兩個數的和及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做和倍問題。
數量關系:
總和 ÷(幾倍+1)=較小的數 總和 - 較小的數 = 較大的數
較小的數 ×幾倍 = 較大的數
解題思路和方法:
簡單的題目直接利用公式,復雜的題目變通後利用公式。
五.差倍問題解答含義及方法
含義:
已知兩個數的差及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做差倍問題。
數量關系:
兩個數的差÷(幾倍-1)=較小的數
較小的數×幾倍=較大的數
解題思路和方法:
簡單的題目直接利用公式,復雜的題目變通後利用公式。
六.倍比問題解答含義及方法
含義:
有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數,再用倍比的方法算出要求的數,這類應用題叫做倍比問題。
數量關系:
總量÷一個數量=倍數 另一個數量×倍數=另一總量
解題思路和方法:
先求出倍數,再用倍比關系求出要求的數。
高一數學 提分技巧
一、預習是聰明的選擇
最好老師指定預習內容,每天不超過十分鍾,預習的目的就是強制記憶基本概念。
二、基本概念是根本
基本概念要一個字一個字理解並記憶,要准確掌握基本概念的內涵外延。只有思維鑽進去才能了解內涵,思維要發散才能了解外延。只有概念過關,作題才能又快又准。
三、作業可鞏固所學知識
作業一定要認真做,不要為節約時間省步驟,作業不要自檢,全面暴露存在的問題是好事。
四、難題要獨立完成
想得高分一定要過難題關,難題的關鍵是學會三種語言的熟練轉換。(文字語言、符號語言、圖形語言)
五、加倍遞減訓練法
通過訓練,從心理上、精力上、准確度上逐漸調整到考試的最佳狀態,該訓練一定要在專業人員指導下進行,否則達不到效果。
六、考前不要做新題
考前找到你近期做過的試卷,把錯的題重做一遍,這才是有的放矢的 復習方法 。
七、良好心態
考生要自信,要有客觀的考試目標。追求正常發揮,而不要期望自己超長表現,這樣心態會放的很平和。沉著冷靜的同時也要適度緊張,要使大腦處於最佳活躍狀態
八、考試從審題開始
審題要避免「猜」、「漏」兩種不良習慣,為此審題要從字到詞再到句。
九、學會使用演算紙
要把演算紙看成是試卷的一部分,要工整有序,為了方便檢查要寫上題號。
十、正確對待難題
難題是用來拉開分數的,不管你水平高低,都應該學會繞開難題最後做,不要被難題搞亂思緒,只有這樣才能保證無論什麼考試,你都能排前幾名。
高一數學基礎差該怎麼學習
一、快速掌握基礎知識
對於基礎薄弱的同學來說,課本就是他們第一步需要掌握的提分法寶。想要提高數學成績,你需要記熟數學課本里的每一個知識點,看懂每一個例題,一章一章的進行掌握。
你可以先記公式,背熟之後在接著研究例題,最後去看課後習題,用例題和習題去思考該怎麼解,不要急著去計算,先想就好,然後在翻看課本看公式定理是怎麼推導的,尤其是過程和應用案例。對於課本中的典型問題,更是要深刻的理解,並學會解題後 反思 。這樣才能夠深刻理解這個問題,跳出題海這個怪圈。
做好錯題筆記,記錄容易犯的錯誤,分析錯誤的原因,找到正確的辦法。不要盲目的去做題,必須要在搞清楚概念的基礎上做這些才是有用的。
二、學會運用基礎知識
在掌握數學基礎知識的同時,要學會知識的運用,這樣你才能在考試中拿到分數。高中數學學習的特點是:速度快、容量大、方法多。而這對於基礎差的同學來說,有時聽了會記不住,或是記住了卻不會解題。這時候就需要我們把筆記記好,不需要一字不落的記下老師說的話,只需要把關鍵的思路和結論記下來就可以了,課後在去整理、回看筆記,這也是再學習的一個過程。
想要學好數學題就必須要多做題,只有做了一定題目才能學好數學,而且做題是高中數學學習的主旋律。但是這里的做題不是盲目做題,而是要看題思考,學會思考、反思、 總結 才是學習數學的王道。
其實數學解題並不難,分析題干,挖掘已知條件,尋找這些條件之間有什麼關系,得出一個有用的結論,這個結論是我們所要用來解決問題的關鍵,這就是數學解題的形式。所以想要學好數學,主要靠的是答題的思路,而不是作出某道題的方法。
做數學應用題的技巧相關 文章 :
★ 做數學應用題的技巧
★ 做數學應用題時的方法高中
★ 六年級數學應用題解題技巧(3)
★ 初中數學應用題解題方法與技巧
★ 應用題初中數學重點解題技巧有哪些
★ 初中數學應用題重點解題技巧
★ 小學數學應用題解題方法
★ 做小學數學作業各類題型的方法
★ 六年級數學應用題解題基本思路
㈢ 高中數學題的解題方法和答題策略
方法一、調理大腦思緒,提前進入數學情境
考前要摒棄雜念,排除干擾思緒,使大腦處於“空白”狀態,創設數學情境,進而醞釀數學思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態准備應考。
方法二、“內緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
方法三、沉著應戰,確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的“門坎效應”,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。
方法四、“六先六後”,因人因卷制宜
在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行“六先六後”的戰術原則。
1.先易後難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2.先熟後生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對後者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。
3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉移,而“先同後異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基矗5.先點後面。近年的高考數學解答題多呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。
方法五、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。
方法六、確保運算準確,立足一次成功
數學高考題的容量在120分鍾時間內完成大小26個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
方法五、一“慢”一“快”,相得益彰
有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的“基礎工程”,題目本身是 “怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。
方法六、確保運算準確,立足一次成功
數學高考題的容量在120分鍾時間內完成大小26個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從“數量”上,而且從“性質”上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。
方法七、講求規范書寫,力爭既對又全
考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分” 也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。
方法八、面對難題,講究方法,爭取得分
會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。
2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。
TOP
方法七、講求規范書寫,力爭既對又全
考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、“感情分”也就相應低了,此所謂心理學上的“光環效應”。“書寫要工整,卷面能得分”講的也正是這個道理。
方法八、面對難題,講究方法,爭取得分
會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。
1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。
2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。
TOP
方法九、以退求進,立足特殊,發散一般對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發思維,達到對“一般”的解決。
方法十、執果索因,逆向思考,正難則反
對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。
方法十一、迴避結論的肯定與否定,解決探索性問題
對探索性問題,不必追求結論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。
方法十二、應用性問題思路:面—點—線
解決應用性問題,首先要全面調查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數據,此為“點”;綜合聯系,提煉關系,依靠數學方法,建立數學模型,此為“線”,如此將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際背景。
一、三點建議
1、保持內緊外松的臨戰狀態
①考生在考試前一、二周陸續放鬆,進入臨戰狀態,並進行生物鍾的調節,讓自己的作習時間安排得與高考同步。在這段時間內,要保持情緒的穩定、降低學習強度,增加睡眠時間,進行輕微的活動,增加體質,熟悉考試細則,作不要的物質准備,在一種寧靜的氣氛中,只要做復習的識證性的復習工作。比如回想學科的整體結構,疏通知識網路,背誦重要的定理公式,查閱筆記中的重要內容等,發現缺漏時,千萬不要焦急,應從容不迫坐下來翻看一下資料。經過強化訓練後的靜息,是記憶恢復的最佳選擇,相反這段時間還做難題,加班加點,只會帶來精神的過渡緊張疲勞,直接或間接、有形或無形的影響考場的發揮。至於作習時間進入工作狀態並迅速達到高潮。
② 考離家前,要按預先列好的清單帶好一應用具,如准考證、文具等,否則進土考場後又為忘這忘那引起不必要的焦慮和恐慌,影響考試的發揮。(如:進入考場後發現缺了什麼或者什麼找不到,急得臉面發紅,冷汗直冒,未考先慌,未戰先敗這種現象時有發生) 。
③ 考試過程要放得開,挺得住,精神集中,心態和平,善於暗示自我,還要認識到個別題目不會做,個別科目未能發揮應有的水平都是正常現象,不必大驚小怪,驚慌失措,自亂陣腳,要保持良好的心態,全身心投入,堅持做好每一題,用好每一分每一秒,不到時間決不放棄,發揚“生命不止、戰斗不息”的頑強作風,相信堅持就是勝利。樹立“我難、你難、他也難,大家都難不算難”的全局意識。
2、使用適應高考的策略
高考的性質與平時的訓練不同,高考的形式也與平時的作業有很大的區別,如時間的限制性,分數的選拔性,評分的階段性等,都要我們採取一些不同平時的解題措施,再次提兩條建議:
① 由於高考時間的限制,因此拿到題後要迅速解決“從何處下手”, “向何方前進”這兩個基本問題,這與平時作業沒有時間限制有很大的區別,高考有明顯的速度要求。據資料統計:一套高考數學試題通常控制在2000個印刷符號,若以每分鍾300—400個符號的速度審題,約需5—7分鍾,考慮到有題目要反復閱讀,實際需要時間不少於12分鍾, 書寫主要用於解答題約3000個印刷符號,若按每分鍾150個印刷符號書寫大約28分鍾,也就是說看清楚土模後直接抄寫答案都得40分鍾,留給思考、草算、文字組織和復查的時間只要80分鍾,平均到每道題(通常22道題,近30個問)保證不了3分鍾,為了給解答留下思考時間,選擇、填空題就應在一、二分鍾之內解決,解決不了就跳過去,不能糾纏解答題中容易題也只能邊想邊寫,節省時間。對於客觀題與主觀題的時間分配應以4:6為宜,具體到每一道題,一旦找到了解題思路,書寫要見簡明扼要,快速規范不能拉泥帶水,羅嗦重復,更不能添蛇畫足,注意知識的得分點,對於設計初中知識的可以直接寫出結論,須知“言多必失”,多寫一步就是多出現一個錯誤的機會,就多佔用了後面高分題的時間,叫做“潛在丟分”。如解應用題或排列組合問題時,在引進所需字母後可寫。依題意”直接寫出數字模型,話件題目較長時,多用。原點二”,這就節約了很多時間。
② 靈活機動,由於高考題量大,且實行“分段評分”,所以考生必須作心理換位,從平時做作業的“全做全對”要求,轉到立足於完成部份題目的部份上來,並積極爭取“分段得分”。即合理應用數學解題策略,使所掌握的知識能充分表示出來,並轉化為得分點,比如:分解分步的解題策略;引理或中途點的解題策略;以退求進 的解題策略;正難則反的解策略;從特殊到一般的解題策略等解題技術,使得進可以全題解決,退可以分段得分。
3、 運用應對選拔的考試技術
高考是選拔性考試,從技術上考慮,有兩點建議,即制定科學的解題程序,樹立“進入錄取線”的全局意識。這就是說要盡量避免因“順序答題、自然書寫”所帶來的緝私戶性的失分,對次提出五點建議:
① 提前進入角色;
②迅速摸清題型;
③執行“三個”循環;
④做到“四先四後”;
⑤答題”一快一慢” 。
對每條建議作如下說明:
①提前進入角色是那到試卷前半小時,應讓細胞開始簡單數學活動,讓大腦進入單一的數學情景,這不僅能轉移臨考前的焦慮,而且有利於把最佳競技狀態帶進考場,這個過程跟體育比賽中“熱身”一樣,具體操作如下:清點用具是否齊全,把一些重要的數據,常用的公式,重要的定理過過電影,同學之間互問互答一些不大復雜的問題,但要注意提出的問題不能太難,否則回出現緊張情緒。
②迅速摸清“題情”。剛拿到試卷,一般心情比較緊張,思考問題尚未進入高潮,不要匆忙答題,可先從頭 尾正面反面覽一遍全卷,弄清全卷有幾頁,幾題,印刷是否完整、清晰,尤其認真讀試卷說明與各類題型的指導語。其主要作用是:
a、了解試卷的全貌和整體結構,便於從科學的知識體系產生聯想,激活回憶,提高分析問題的能力和解決問題的效率;
b、順手解答,即順手解答那些一眼看得出結論的簡單選擇題、填空題,尋找自己比較熟悉的內容,易上手會做的題目,主要能很快答出一、二道題,情緒就會迅速穩下來,有“旗開得勝”的愉悅,有一種增強信心的作用,他將會鼓勵自己能更充分的發揮。
c、粗略分類,給“先後難”做好准備。
d、心中有數,即題目有數,各學科知識心中有數,每一道題得分情況有數,不怕難題不得分,就怕每題都扣分。
③執行“三個循環”,這就是講完整解答一套試題可經過三個循環,一頭一尾兩個小循環,各用時10分鍾左右,中間一個大循環用時近100分鍾。
第一循環通覽全卷,先作簡單的第一遍解答是第一個小循環,按高考題的難度比例3:5:2計算,可先做30%的容易題,獲二、三十分,同時把情緒穩定下來,將思維推向高潮。
第二個循環用時100分鍾,基本完成全卷,會做的都做完了,在這個大循環中,要有全局意識,能整體把握,並要執行“四先四後”, “一快一慢”的原則。
第三個循環查收尾,用大約10分鍾的時間來檢查解答並實施“分段得分”,對於大多數考生來說,不可能字第二個循環中答對所有題目,因此要對那些答不全或答後一關,即使做完了題目,也要復查,防止“會而不對,對而不全”,這一步是正常發揮乃至超水平發揮不可缺少的一步,否則將遺憾終身。
④做到“四先四後”,考慮到滿分卷極少數的,絕大多數考生都只能答部份題或題目的部份,執行好“四先四後”的技術是明智的。即:
a、先易後難:就是說先做簡單題,後做困難題,跳過啃不動的題目,對於低分題不能耽誤時間過長,千萬防止“前面難題久攻不下,後面易無暇顧及” 。
b、先熟後生:通覽全卷,即可看到較多有利條件,也可觀到較多不利因素,特別是後者,不要驚慌失措,萬一試題偏難(比如2003年高考卷),首先要學會暗示自己,安慰自己“我難、你難、他也難,大家都難不算難,要鎮定,不要緊張”,先做那些容易掌握比較到家,題目比較熟悉的題目,這樣容易產生精神亢奮,會使人情不自禁的進入境界,展開聯想,促進轉化,拾級登高,達到預想不到的目的。
c、先高後低:就是說要優先處理高分題,特別是在考試後半時間,更要注意解題的時間效益,兩道都會做的題,應先做高分題,後做低分題,盡可能減少時間不夠而失分其次要注意前面低分題久攻不下,後面高分容易題無時間光顧這種想像發生。
d、先同後異:就是說考慮將同學、同類型的題目集中處理,這些題目常常用到同樣的數學思想和類似的思考方法,甚至同一數學公式,把它們和起來,一齊處理,思考比較集中,方法知識網路比較系統,有利於提高單位時間的小,避免興奮中心的過快轉移帶來不利的影響。
⑤答題“一快一慢”:這就是說審題要慢,答題要快。
審題要慢:是說題目本身包含無數個信息,問題是你將如何將這無數個信息通過加工、整理成你的有用的東西。這就是需要逐字逐句看清楚,力求從語法結構、邏輯關系、數學含義、解答形式、數據要求等各方法弄懂這一步不要怕慢。“成在審題,敗在審題” 。
二、掌握高考解題的思維規律
研究表明:中學教材是高考試題的基本來源,每年平均有50%--80%的試題是課本的類型、變題。少量高難題找不到課本的原型,但實際也是按課本知識所能達到的范圍來設計的,因此解高考題與平時作業不同之處在於他在特殊環境下和特定的條件下完成的,其中最顯著的特點是嚴格受時間的限制,因此解高考題必須做到:
①迅速解決“從何處著手”;
②迅速解決“向何方前進”;
③立足中下題目,力爭高水平;
④立足一次成功,重復復查環節。
因為高考時間較為緊張,不可能做大量細微的接後檢驗,所以要立足與一次成功,穩扎穩打,字字正確,步不有據努力提高解題的成功率,最好每進行一次書寫,都用眼睛的餘光掃視上下兩行,順便檢查有無差錯。
復查應“以粗為主,粗細結合”,其主要目的在於看題目是否遺漏﹖題意是否弄錯﹖要求是否符合﹖解題過程是否合理﹖步驟是否完整﹖結果是否科學﹖其復查方法主要有:復查核對、多解對照、逆向運算、觀測估算、特值檢驗、條件檢驗、邏輯檢驗等。
三、注意加強分段得分技術
高考試題的有一個明顯特點是“進門容易、出門難”,因此,在解高考試題分段中又一個技術是分段得分。
①分解分步----缺步解答:解題中遇到一個很難的問題,實在啃不動,一個明智的策略是,將他分解為一系列的子問題,先解決問題的一部分,把這種情況反映出來,說不定起到“柳暗花明” 的效果,也就是說在高考解答中能做幾步算幾步,能解決什麼程度就表達到什麼程度,最後雖不能拿滿分,但部份分總是可以拿的。
②以退求進---退步解答: “以退求進”是一個重要的解題策略,如果我們不能馬上解決的所面臨的問題,那麼可以從一般到特殊,從抽象到具體,從復雜到簡單,從整體退到部分,從較強的結論退到較弱的結論,總之退到一個能夠解決的問題上來。這叫做“退一步,海闊天空” 。
③正難則反---倒步叫做“正難則反”也是一個重要的解題策略,順推有困難時就逆推,直接證明有困難時就從見解證明,從左推有困難時就從右推,從條件有困難時就從結論出發,這種死亡方式叫逆向思維,效果很好。
④掃清外圍---輔助解答:一道題目的完整解答,即有主要的實質步驟,也要有輔助性的步驟,實質性的步驟找不到,找輔助解答的步驟也是明智的,有時間甚至是必可少的。輔助解答的內容十分廣泛,如准確作圖,條件翻譯等。
⑤大膽猜測—認真作答:猜測是一種能力,最後就是在結實過程中實在沒有辦法,無從下手,不妨就用猜想來“進可攻全守,退可分步得分” 。