⑴ 數學思維十種思維方式是什麼
1、公式法。
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
2、對照法。
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
例:三個連續自然數的和是18,則這三個自然數從小到大分別是多少。
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
3、比較法。
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
1、找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
2、找聯系與區別,這是比較的實質。
3、必須在同一種關系下(同-種標准)進行比較,這是「比較」的基本條件。
4、要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
5、因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
例:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生。
這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。
找解決思路:每人多種7-5=2(棵), 那麼,全班就多種了75+15=90(棵),全班人數為90+2=45(人)。
4、分類法。
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要故到大類之中的各小類不重復、不遺漏、不交叉。
例:自然數按約數的個數來分,可分成幾類。
答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1; (2)有兩個約數的,也叫質數,有無數個; (3)有三個約數的,也叫合數,也有無數個。
5、分析法。
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的種思維方法叫做分析法。
依據:總體都是由部分構成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,-直到問題得到解決為止,這種解題模式是「由果溯因」。分析法也叫逆推法。常用「枝形圖」進行圖解思路。
例:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件。
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。
6、綜合法。
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法。這種方法適用於己知條件較少,數量關系比較簡單的數學題。
例:兩個質數,它們的差是小於30的合數,它們的和即是11的倍數又是小於50的偶數。寫出適合上面條件的各組數。
思路: 11的倍數同時小於50的偶數有22和44。兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。
和是22的兩個質數有: 3和19, 5和17。它們的差都是小於30的合數嗎?和是44的兩個質數有: 3和41, 7和37, 13和31。它們的差是小於30的合數嗎?這就是綜合法的思路。
7、方程法。
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法最大的特點是把未知數等同於已知數看待。
參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。
例:一個數擴大3倍後再增加100,然後縮小2倍後再減去36,得50。求這個數。
例:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩餘6千克。這桶油重多少千克。
這兩題用方程解就比較容易。
8、參數法。
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的-種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。
例: 一項工作,甲多帶帶做要4天完成,乙多帶帶做要5天完成。兩人合做要多少天完成。
其實,把總工作量看作「1」,這個「1」就是參數,如果把總工作量看作「2、3、.....都可以,只不過看作「1」運算最方便。
9、排除法。
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例:為什麼說除2外,所有質數都是奇數。
這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那麼,這個偶數一定能被2整除,也就是說它一定有約數2。 一個數的約數除了1和它本身外,還有別的約數(約數2),這個數定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。
10、特例法。
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一。般性存在於特殊性之中。
例:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。
可以取小圓半徑為1,那麼大圓半徑就是2。計算一下,就能得出正確結果。
⑵ 數學思維包括哪些
問題一:數學思維都包括哪些思維 這些思維在生活學習中有什麼用 一駭的數學思維包括:邏輯思維,數理思維,綜合思維能力,概括思維能力,抽象思維能力、創造性思維能力等等
邏輯思維:對於需要陳述的問題一定要邏輯性強,尤其是涉及到官司方面,闡述一定得邏輯性強
數理思維:日常生活中的買賣行為,經濟投資行為,財務行為等等都必須要求一定的數理思維
綜合思維能力:日常生活中考慮問題不能單一化,片面化,要綜合各種可能的因素進行思考問題
概括思維能力:對於得到的許多的零散的信息進行概括處理
抽象思維能力:對於一些從沒見過的或者從沒經歷過的事物或者事情的想像力
創造思維能力:世界沒有創造思維,還能進步嗎?
問題二:數學思維訓練包括哪些 二、「靈智思維班」的教學安排小班分階段教學,共計9個月課程,假期班、周末班、平時班集訓上課。教學內容包括:超常兒童數學思維潛能訓練、超常兒童全語言
問題三:數學思維包括哪些方面? 邏輯思維,發散思維,空間思維,線性思維等
問題四:數學思考包括哪些內容? 數學思考包括的內容:
1、建立數感、符號意識和空間觀念,初步形成幾何直觀和運算能力,發展形象思維和抽象思維。
2、體會統計方法的意義,發展數據分析觀念,感受隨機現象。
3、在參與枝老觀察、實驗、猜想、證明、綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。
4、學會獨立思考,體會數學的基本思想和思維方式。
問題五:數學有哪些思維? 1:你買東西的時候就有數學思維。 2:你做事業的時候,比如你投資某個項目的時候,你要考慮到怎麼樣才能更加賺錢。 3:還有做工程的時候
問題六:有哪些好的數學思維方式? 一、平常學的公式是要用上的 二、分析,運用最好的方法和技巧 三、不怕多想,要多試 四、平時多做些數學題,很多題的解決方法大亮槐都猛鍵升是一樣的 五、有少部分題會運用上逆向思維,正的行不通,就用反的想
⑶ 數學思維包括哪些方面
優質解答
思維是人腦對事物本質和事物之間規律性關系概括的間接的反映.思維是認知的核心成分,思維的發展水平決定著整個知識系統的結構和功能.因此,開發高中學生的思維潛能,提高思維品質,具有十分重大的意義.
思維品質主要包括思維的靈活性、廣闊性、敏捷供、深刻性、獨創性和批判性等幾個方面.思維的靈活性是建立在思維廣闊性和深刻性的基礎上,並為思維敏捷性、獨創性和批判性提供保證的良好品質.在人們的工作、生活中,照章辦事易,開拓創新難,難就難在缺乏靈活的思維.所以,思維靈活性的培養顯得尤為重要.
數學思維是人腦和數學對象交互作用並按一般思維規律認識數學規律的思維過程.其表現是學生從原有的認知結構出發,通過觀察、類比、聯想、猜想等一系列數學思維活動,立體式地展示問題、提出過程,在溫故知新的聯想過程中產生強烈的求知慾,盡可能地參與概念的形成和結論的發展過程,並掌握觀察、實驗、歸納、演繹、類比、聯想、一般化與特殊化等思考問題的方法.
⑷ 思維數學學什麼
思維數學數與運算、平面圖形、立體圖形、規則、分類、測量等內容,思維數學可不僅僅是數數和加減,讓孩子理解和運用抽象數字後的實際意義才是有效的,而這些數學思維能力需要在具有支持性的環境中進行鋪墊和逐步發展。
思維數學課專注於培養2-6歲的兒童思維數學,通過直觀的教具操作、獨特的團隊游戲和可視化的個性教學,讓孩子在輕松構建數學知識的同時,培養孩子的創意思考力,讓孩子快樂的學習數學。培養孩子的觀察能力、理解能力、分析推理能力、歸納分類能力、創新能力、解決問題的能力。
⑸ 數學思維有哪些
數學思維有比較思想方法、對應思想方法、假設思想方法、類比思想方法、符號化思想方法、分類思想方法、集合思想方法、轉化思想方法、統計思想方法、極限思想方法、代換思想方法、可逆思想方法、化歸思維方法、變中抓不變的思想方法、數學模型思想方法和整體思想方法等。
1、比較思想方法:是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
2、對應思想方法:對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
3、假設思想方法:假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
4、類比思想方法:是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得自然和簡潔。
5、符號化思想方法:用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式等。
⑹ 數學思維十種思維方式是什麼
數學思維十種思維方式:
1、對照法
根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
2、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。
3、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
4、分類法
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
5、分析法
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的種思維方法叫做分析法。
6、綜合法
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
7、方程法
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。
方程法最大的特點是把未知數等同於已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。
8、參數法
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的-種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。
9、排除法
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。
這是一種不可缺少的形式思維方法。
10、特例法
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。
特例法的邏輯原理是:事物的一.般性存在於特殊性之中。
⑺ 「思維數學」是什麼意思
1、數學思維就是數學地思考問題和解決問題的思維活動形式。
2、思維指的是人腦對客觀現實的概括和間接反映,屬於人腦的基本活動形式。
3、數學思維也就是人們通常所指的數學思維能力,即能夠用數學的觀點去思考問題和解決問題的能力。比如轉化與劃歸,從一般到特殊、特殊到一般,函數/映射的思想,等等。一般來說數學能力強的人,基本體現在兩種能力上,一是聯想力,二是數字敏感度。前者能夠把兩個看似不相關的問題聯系在一起,這其中又以構造能力最讓人折服;後者便是大多數曝光的所謂geek,比如什麼Nash之類的。當然也有兩種能力的結合體。
4、我國初、高中數學教學課程標准中都明確指出,思維能力主要是指:會觀察、實驗、比較、猜想、分析、綜合、抽象和概括;會用歸納、演繹和類比進行推理;會合乎邏輯地、准確地闡述自己的思想和觀點;能運用數學概念、思想和方法,辨明數學關系,形成良好的思維品質。
簡單講就是用數學的抽象模型(比如代數,量化等)來思考問題的思維模式
舉個例子,一個不透明正方體能不能看到4個面,因為正方體的6個面兩兩平行一共3組,而平行的兩個面你無法同時看到,因此用數學的方法你就知道了最多看到3個面,這就是最簡單的數學思維
數學思維是孩子在生活學習過程中用數學的思維來解決一些問題,這方面培飛就很權威,孩子在3歲起就要上這類的培訓課了,對孩子是一生的好處。去培飛思維看看吧。
100*20%=20克
20/10%-100=100克
多元思維數學採用專業的數學玩、教具,讓孩子通過觀察、觸摸和操作,掌握感知集合、數、形、量、時間、空間、邏輯思維等內容,使抽象的數學更具體化。同時通過符合兒童認知的形象思維,由對具體物體數量的認知轉化為對抽象數學符號的理解,由具體物體數量的變化逐漸掌握計算的規律。培養孩子多角度思維、理解、判斷、計算、空間感知的能力,讓孩子思維更敏捷,頭腦更靈活。專家認為游戲化的教學激發了孩子對數學的興趣,使孩子能在日常生活中應用所學到的數學解決實際問題,學會舉一反三,讓孩子思維多元化,算術能力化。為孩子未來的數學學習奠定基礎。卓人右腦多元思維數學,是幼兒數學啟蒙教育不可多得優秀產品。適用於專業幼兒培訓機構、幼兒園。
1+口=3
口-2=1
2+口=5
5-口=3
資料庫(Database)是按照數據結構來組織、存儲和管理數據的倉庫,它產生於距今五十年前,隨著信息技術和市場的發展,特別是二十世紀九十年代以後,數據管理不再僅僅是存儲和管理數據,而轉變成用戶所需要的各種數據管理的方式。資料庫有很多種類型,從最簡單的存儲有各種數據的表格到能夠進行海量數據存儲的大型資料庫系統都在各個方面得到了廣泛的應用。
奧數中比較好的一點是可以訓練學生的數學思維能力,卓越的思維數學課程也可以起到這樣的作用,而且授課方式更活潑,孩子在有趣的課堂學習中輕松訓練數學思維能力,幫助提高考試成績。不管是不是參加競賽都可以通過這個課程訓練孩子的數學思維,如果有興趣參加競賽,也可能可以幫助拿到一些名次,而且對孩子的思維拓展和以後的初高中學習也會有很好的幫助。
數學思維訓練不一定局限於課本知識點,注重你對題意的理解,發現問題、分析問題、解決問題。至於奧數不用我多說了,特點在於它注重解題,說白了就是一種解題比賽,奧數是一種很好的思維訓練手段。
數學只是讓人懂得算術,思維數學,是讓人學會用數學思考。
⑻ 數學思維的一般方法有哪些
數學思想方法有:函數的思想、分類討論的思想、逆向思考的思想、數形結合思想、函數與方程、化歸與轉化、整體思想、轉化思想、隱含條件思想、極限思想。
3.逆向思考的思想
逆向思維,也稱求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式 ,敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
4.數形結合思想
數與形是數學中的兩個最古老,也是最基本的研究對象,它們在一定條件下可以相互轉化。中學數學研究的對象可分為數和形兩大部分,數與形是有聯系的,這個聯系稱之為數形結合,或形數結合。