導航:首頁 > 數字科學 > 數學建模能力是什麼意思

數學建模能力是什麼意思

發布時間:2023-06-04 13:53:53

A. 數學建模是什麼啊

在我的理解:

數學建模就是指對於一個現實對象,為了一個特定目的,根據其內在規律,作出必要的簡化假設,運用適當的數學工具,得到的一個數學結構。他的意義在於利用數學方法解決實際問題。

如果想要學好數學建模必須學習:高數,線性代數,C語言,還涉及到模糊數學(部分),同時在建模過程中學會MATLAB和lingo等軟體的使用。能夠培養一個人的開發能力和自主學習能力,還是很有用處的。

拓展知識:新手入門書

  1. 數學模型(姜啟源、謝金星) 很適合新手,在內容編排上也是國產風格,按模型知識點分類,一塊一塊講,面面俱到。

  2. 數學建模方法與分析.(紐西蘭)Mark.M.Meerschaert 它是典型的外國教材風格,從一個模型例子開始,娓娓道來,跟你講述數學建模的方方面面,其中反復強調的一個數學建模五步法,後來細細體會起來的確很有道理,看完大部分這本書的內容,就可以體會並應用這個方法了。

B. 大學數學建模是什麼意思

數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。

(2)數學建模能力是什麼意思擴展閱讀

大學數學建模考試是教育部高教司和中國工業與應用數學學會共同主辦的面向全國大學生的群眾性科技活動,目的在於激勵學生學習數學的'積極性,培養創新精神及合作意識,推動大學數學教學體系、教學內容及方法的改革。

C. 數學建模是什麼,他有什麼用

數學建模是數學分支,作用是根據結果去解決實際問題。

數學建模,就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

應用:

自從20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在21世紀這個知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國家經濟和科技的後備走到了前沿。

經濟發展的全球化、計算機的迅猛發展、數學理論與方法的不斷擴充,使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。

D. 什麼是數學建模

數學建模
數學建模是利用數學方法解決實際問題的一種實踐。即通過抽象、簡化、假設、引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解。

數學建模將各種知識綜合應用於解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。
數學建模是使用數學模型解決實際問題。
數學模型
數學模型是對於現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構。

簡單地說:就是系統的某種特徵的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數、圖形、代數方程、微分方程、積分方程、差分方程等)來描述(表述、模擬)所研究的客觀對象或系統在某一方面的存在規律。

E. 數學建模 什麼意思

數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。

當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

數學模型(Mathematical Model)是一種模擬,是用數學符號,數學式子,程序,圖形等對實際課題本質屬性的抽象而又簡潔的刻畫,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。

數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)。

(5)數學建模能力是什麼意思擴展閱讀:

建模過程

1、模型准備

了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。

2、模型假設

根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。

3、模型建立

在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。

4、模型求解

利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。

5、模型分析

對所要建立模型的思路進行闡述,對所得的結果進行數學上的分析。

6、模型檢驗

將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。

7、模型應用與推廣

應用方式因問題的性質和建模的目的而異,而模型的推廣就是在現有模型的基礎上對模型有一個更加全面的考慮,建立更符合現實情況的模型。

F. 如何培養數學建模能力

新課標下如何培養學生的數學建模思想
數學模型是指針對或參照某種事物的特徵或數量相依關系,採用形式化的數學語言,概括地或近似地表示出來的一種數學結構。初中數學中常見的建模方法有:對現實生活中普遍存在的等量關系(不等關系),建立方程模型(不等式模型);對現實生活中普遍存在的變數關系,建立函數模型;涉及圖形的,建立幾何模型;涉及對數據的收集、整理、分析,建立統計模型……這些模型是常見的,並且對它們的研究具有典型的意義,這也就註定了這些內容的重要性。在中學階段,數學建模的教學符合數學新課程改革理念。通過建模教學,可以加深學生對數學知識和方法的理解和掌握,調整學生的知識結構,深化知識層次。學生通過觀察、收集、比較、分析、綜合、歸納、轉化、構建、解答等一系列認識活動來完成建模過程,認識和掌握數學與相關學科及現實生活的聯系,感受到數學的廣泛應用。同時,培養學生應用數學的意識和自主、合作、探索、創新的精神,使學生能成為學習的主體。因此在數學課堂教學中,教師應逐步培養學生數學建模的思想、方法,形成學生良好的思維習慣和用數學的能力。下面談談建模思想在初中數學教學中幾種常見的應用類型。
一、 方程思想
新課標要求能夠根據具體問題中的數量關系列出方程,體會方程是刻畫現實世界中的一個有效的數學模型。這即是方程的思想在初中數學中的應用,它要求我們能夠從問題的數量關系入手,運用數學語言將問題中的條件轉化為方程(組),然後通過解方程(組)使問題獲解。例:學校準備在圖書館後面的場地邊上建一個面積為50平方米的長方形自行車棚,一邊利用圖書館的後牆,並利用已有的總長為25米的鐵圍欄,請你設計,如何搭建比較合理?此題是華東師大出版的數學(九年級上)課本P38習題第9題。它考查了同學們在現實生活的背景中理解基本數量關系的能力。
顯然,方程的思想就是把未知量用字母表示和已知量一起參與建立等式,構造方程的方法來解決問題,體現了未知和已知的統一。所以,在建立方程模型時,應著重培養學生如何學會尋找問題中的已知量、未知量的關系建立方程。隨著課改的深入,數學命題更重視以社會熱點,焦點和日常生活中熟悉的事實為背景,構建一個有鮮活背景,與社會,生活相關的數學應用題。因此,在課堂教學中,教師應引導學生關注生活,生產中的數學問題,盡可能給學生提供合適的問題,鼓勵學生積極參與解決問題的活動,自己去探索,研究,從而強化應用數學的意識,並且具備把實際問題轉化為數學問題的能力,使學生領會數學建模的思想和基本過程,提高解決問題的能力和信心。
二、不等式(組)的思想
同樣的,數學建模思想用於不等式(組),新課標提出了類似的要求。不等式(組)的思想即從問題的數量關系出發,運用條件將問題中的數量關系轉化為不等式(組)來解決。
例:某校初一、初二兩年段學生參加社會實踐活動,原計劃租用48座客車若干輛,但還有24人無座位。
1) 設原計劃租用48座客車x輛,試用x的代數式表示這兩個年段學生的總人數。
2) 現決定租用60座客車,則可比原計劃租48座客車少2輛,且所租60座客車中有一輛沒有坐滿,但這輛車已坐的座位超過36位,請你求出該校這兩個年段學生總人數。此題便可通過構建不等關系得以解答。
三、 函數思想
新課標提出,能用適當的函數表示法刻畫某些實際問題中變數之間的關系變化,結合對函數關系的分析,嘗試對變數的變化規律進行初步預測,能用一次函數,二次函數等來解決簡單的實際問題。在學習了正、反比例函數、一次函數和二次函數後,學生的頭腦中已經有了這些函數的模型。因此,一些實際問題就可以通過建立函數模型來解決
例:某中學要印刷本校高中錄取通知書,有兩個印刷廠前來聯系製作業務。甲廠優惠條件是每份定價1.5元,八折收費,另收900元製版費;乙廠的收費條件是每份定價1.5元的價格不變,而製版費900元則六折優惠,且甲、乙都規定,一次印刷數量至少是500份,如何根據印數數量選擇比較合算的方案?若印刷數量為2000份,應選擇哪個?費用是多少?
方案設計題是基礎知識與基本技能結合比較緊密的一類應用題。此題不僅充分運用了函數的思想,又用到分類討論思想。其形式上表述生產、銷售、規劃等問題十分貼近生活,是近年來中考熱點問題。
四、 統計思想
在當前的經濟生活中,統計知識的應用越來越廣泛。而數學建模思想的應用在統計學方面的研究得到很好的體現。如新課標明確提出:體會用樣本估計總體的思想。例:在某樹林中100平方米的面積上統計有8棵紅楓樹,整個樹林面積為10000平方米,你能估計整個樹林共有多少棵楓樹嗎?
由以上幾種常見數學模型的建立,可以發現數學模型的建立過程大致有以下三個步驟:①實際問題→數學模型;②數學模型→數學的解;③數學的解→實際問題的解.因此,在實際課堂教學中,教師應以學生為主體,充分引導學生注意觀察生活中的各種現象,充分利用教材的優勢,創造性使用教材,努力創設合適的問題情境,讓學生投入到解決問題的實踐活動中,自己去探索,經歷數學建模的全過程,初步領會數學模型的思想和方法,增強數學應用意識,提高學生的創新能力,養成良好的思維品質,使學生學到有用的數學,學到不同的數學。

閱讀全文

與數學建模能力是什麼意思相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:703
乙酸乙酯化學式怎麼算 瀏覽:1371
沈陽初中的數學是什麼版本的 瀏覽:1316
華為手機家人共享如何查看地理位置 瀏覽:1009
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:846
數學c什麼意思是什麼意思是什麼 瀏覽:1368
中考初中地理如何補 瀏覽:1258
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:670
數學奧數卡怎麼辦 瀏覽:1348
如何回答地理是什麼 瀏覽:988
win7如何刪除電腦文件瀏覽歷史 瀏覽:1021
大學物理實驗干什麼用的到 瀏覽:1447
二年級上冊數學框框怎麼填 瀏覽:1658
西安瑞禧生物科技有限公司怎麼樣 瀏覽:822
武大的分析化學怎麼樣 瀏覽:1211
ige電化學發光偏高怎麼辦 瀏覽:1300
學而思初中英語和語文怎麼樣 瀏覽:1605
下列哪個水飛薊素化學結構 瀏覽:1387
化學理學哪些專業好 瀏覽:1451
數學中的棱的意思是什麼 瀏覽:1016