『壹』 七年級數學上冊知識點總結第二章
勤奮至關重要!只有勤奮學習,才能成就美好人生!勤奮出天才,這是一面永不褪色的旗幟,它永遠激勵我們不斷追求不斷探索。下面給大家分享一些關於 七年級數學 上冊知識點 總結 第二章,希望對大家有所幫助。
整式的加減
一.用字母表示數(代數初步知識)
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式;用基本運算符號把數和字母連接而成的式子叫做代數式,如n,-1,2n+500,abc。
2. 代數式書寫規范:
(1)數與字母相乘,或字母與字母相乘中通常使用「· 」 乘,或省略不寫;
(2)數與數相乘,仍應使用「×」乘,不用「· 」乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用 分數線 將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a .
出現除式時,用分數表示;
(7)若運算結果為加減的式子,當後面有單位時,要用括弧把整個式子括起來。
3.幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數可以是:2n ,奇數可以是:2n+1;三個連續整數可以是: n-1、n、n+1 ;
(4)若b>0,若正數是:a2+b ,負數是: -a2-b ,非負數可以是: a2 ,非正數可以是:-a2 .
二.整式
1.單項式:表示數與字母的乘積的代數式叫單項式。單獨的一個數或一個字母也是代數式。
2.單項式的系數:單項式中的數字因數;單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;
3.單項式的次數:一個單項式中,所有字母的指數和
4多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數項。
多項式里次數最高項的次數,叫做這個多項式的次數。常數項的次數為0。
注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
5整式:單項式和多項式統稱為整式,即凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式. 整式分類為: .
注意:分母上含有字母的不是整式。
6.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列.
三.整式的加減
1.合並同類項
2同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
3合並同類項的法則:同類項的系數相加,所得的結果作為系數,字母和字母的指數不變。
4合並同類項的步驟:(1)准確的找出同類項;(2)運用加法交換律,把同類項交換位置後結合在一起;(3)利用法則,把同類項的系數相加,字母和字母的指數不變;(4)寫出合並後的結果。
5去括弧
去括弧的法則:
(1)括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項的符號都不變;
(2)括弧前面是「—」號,把括弧和它前面的「—」號去掉,括弧里各項的符號都要改變。
6添括弧法則:添括弧時,若括弧前邊是「+」號,括弧里的各項都不變號;若括弧前邊是「-」號,括弧里的各項都要變號.
7整式的加減:進行整式的加減運算時,如果有括弧先去括弧,再合並同類項;整式的加減,實際上是在去括弧的基礎上,把多項式的同類項合並.
8整式加減的步驟:(1)列出代數式;(2)去括弧;(3)添括弧(4)合並同類項。
七年級數學上冊知識點總結第二章相關 文章 :
★ 初一數學上冊知識點歸納
★ 初一數學上冊第二章的總結手抄報
★ 初一上冊數學知識點歸納整理
★ 初一數學上冊知識要點
★ 數學初一第二章整式的加減
★ 初一數學上冊知識點總結
★ 七年級上冊數學知識點總結三篇
★ 初一數學上冊重點知識整理
★ 七年級上冊數學全冊概念總結復習
★ 初中七年級數學知識點歸納整理
『貳』 七年級上冊數學書目錄
人教版
第一章 有理數
1.1 正數和負數
1.2 有理數
1.3 有理數的加減法
實驗與探究 填幻方
閱讀與思考 中國人最先使用負數 1.4 有理數的乘除法
觀察與猜想 翻牌游戲中的數學道理
1.5 有理數的乘方
數學活動
小結
復習題1
第二章 整式的加減
2.1 整式
閱讀與思考 數字1與字母X的對話 2.2 整式的加減
信息技術應用 電子表格與數據計算 數學活動
小結
復習題2
第三章 一元一次方程
3.1 從算式到方程
閱讀與思考 「方程」史話
3.2 解一元一次方程(一)——合並同類項與移項
實驗與探究 無限循環小數化分數 3.3 解一元一次方程(二)——去括弧與去分母
3.4 實際問題與一元一次方程
數學活動
小結
復習題3
第四章 幾何圖形初步
4.1 幾何圖形
閱讀與思考 幾何學的起源
4.2 直線、射線、線段
閱讀與思考 長度的測量
4.3 角
4.4 課題學習 設計製作長方體形狀的包裝紙盒
數學活動
小結
復習題4
『叄』 初一上冊數學學什麼 有哪些重要知識點
對於剛上初中的學生來說,利用暑假時間預習初一新課程是非常重要的。那麼,初一上冊數學學什麼內容呢?下面我整理了一些相關信息,供大家參考!
由於各個版本初一數學的學習內容有所不同,下面我整理了人教版初一上冊數學的目錄,供大家參考!
第一章有理數
1.1正數和負數
閱讀與思考用正負數表示加工允許誤差
1.3有理數的加減法
實驗與探究填幻方
閱讀與思考中國人最先使用負數
1.4有理數的乘除法
觀察與思考翻牌游戲中的數學道理
1.5有理數的乘方
數學活動
小結
復習題1
第二章整式的加減
2.1整式
閱讀與思考數字1與字母X的對話
2.2整式的加減
信息技術應用電子表格與數據計算
數學活動
小結
復習題2
第三章一元一次方程
3.1從算式到方程
閱讀與思考「方程」史話
3.2解一元一次方程(一)——合並同類項與移項
實驗與探究無限循環小數化分數
3.3解一元一次方程(二)——去括弧與去分母
3.4實際問題與一元一次方程
數學活動
小結
復習題3
第四章圖形認識初步
4.1多姿多彩的圖形
閱讀與思考幾何學的起源
4.2直線、射線、線段
閱讀與思考長度的測量
4.3角
4.4課題學習設計製作長方體形狀的包裝紙盒
數學活動
小結
重視預習。如果能做好提前預習,你在上課時能輕松學習,也能體會到學習數學的成就感,學數學的信心會倍增。在預習中還能發現內容中的問題,可以在課堂上重點聽講,有利於提高學習效率。養成預習的習慣,還能讓你掌握閱讀數學題目的技巧,提高你閱讀數學題目的能力。
緊跟課堂。課堂是數學學習的重要陣地,課堂上要認真聽重點內容、難點知識、典型例題、基本圖形、解題方法、知識小結。聽解題的規范書寫格式。
精練巧練。學數學沒有捷徑可走。適當多做題目,養成良好的解題習慣。做題的數量和質量是學好數學的保證。但不能陷入題海戰術中,一味埋頭做題。重視一題多解,一題多變;重視經典題型的訓練;重視錯題的更正。這樣才能進行有針對性的訓練,提高學習效率。
『肆』 人教版初一上冊數學有幾個單元分別是什麼分別學的是什麼
七上共有《有理數》、《整式的加減》、《一元一次方程》、《幾何圖形初步》,
共四章內容:
第一章 有理數
1.1 正數和負數
1.2 有理數
1.3 有理數的加減法
實驗與探究 填幻方
閱讀與思考 中國人最先使用負數
1.4 有理數的乘除法
觀察與猜想 翻牌游戲中的數學道理
1.5 有理數的乘方
數學活動
小結
復習題1
第二章 整式的加減
2.1 整式
閱讀與思考 數字1與字母X的對話
2.2 整式的加減
信息技術應用 電子表格與數據計算
數學活動
小結
復習題2
第三章 一元一次方程
3.1 從算式到方程
閱讀與思考 「方程」史話
3.2 解一元一次方程(一)——合並同類項與移項
實驗與探究 無限循環小數化分數
3.3 解一元一次方程(二)——去括弧與去分母
3.4 實際問題與一元一次方程
數學活動
小結
復習題3
第四章 幾何圖形初步
4.1 幾何圖形
閱讀與思考 幾何學的起源
4.2 直線、射線、線段
閱讀與思考 長度的測量
4.3 角
4.4 課題學習 設計製作長方體形狀的包裝紙盒
數學活動
小結
復習題4
部分中英文詞彙索引
『伍』 七年級上冊數學知識點歸納總結
下面是我整理的七年級上冊數學知識點,便於同學們預習時可以更准確的知道知識點的重點是什麼,供大家參考。
第一章:有理數的運算
本章節主要介紹概念性知識,通過圖形或符號來區分數之間的關系。定義如下:
1、有理數的概念:正整數、0、負整數、正分數、負分數統稱為有理數;數軸與原點:用一條直線上的點表示數,這條直線就叫做數軸,在這條直線上任取一個點表示0,這個點叫做原點,在原點的左邊或原點下邊的點到原點的距離用負數表示,在原點的右邊或上邊的數到原點的距離用正數表示,在數軸上與原點距離相反相等的兩個點代表的兩個數為相反數,在數軸上表示的點a到原點的距離叫這個數的絕對值。
2、有理數的加減法:同號的兩個數相加,符號不變,絕對值相加;絕對值不相等的異號兩數相加,和取絕對值較大的加數的符號,並用較大的數的絕對值減較小的數的絕對值,互為相反數的兩個數相加得0;一個有理數減去另一個有理數,相當於加這個數的相反數;
3、有理數的乘除法:同號兩個數相乘,同號得正,異號得負,乘法的積為他們的絕對值相乘,除法為被除數乘以除數的倒數,除數不能為0;乘積是1的兩個數互為倒數,0沒有倒數;整數的乘法交換率和結合率同樣適用於有理數;求n個相同因數的積的運算叫乘方,乘方的結果叫做冪,在a的n次方中a叫做底數,n叫做指數,寫作a∧n;
4、有理數的混合運算:先乘方,再乘除,最後加減;同級運算,從左到右進行;如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行;
5、科學記數法:把一個大於10的數表示成a×10∧n的形式叫做科學計數法,其中a大於或等於1且小於10,n為正整數。
第二章:整式的加減
整式的加減即是合並同類項的計算;在一個式子中,所含字母相同,並且相同字母的指數也相同的項叫做同類項,幾個常數項也是同類項;把多項式中的同類項合並成一項叫做合並同類項,合並同類項後,所得項的系數是合並前各同類項的系數和,且字母連同他的指數不變;一般幾個整數相加,如果有括弧先去括弧,然後在合並同類項,如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同,如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
第三章:一元一次方程
一個方程中,只含有一個未知數,且未知數的次數都是1,等號兩邊都是整數,這樣的方程叫做一元一次方程;方程的兩邊同時加上或減去同一個數或式子結果仍相等,方程兩邊同時乘同一個數,或除以同一個不為0的數,結果仍相等。
第四章:立體圖形及幾何圖形
本章主要介紹立體圖形及幾何圖形的認識;點、線、面、體的關系的認識;直線、射線、線段的認識;不同角的概念及大小的比較。
1、平面圖形和立體圖形:各部分都在同一個平面內的幾何圖形叫做平面圖形;有些幾何圖形的各部分不在同一個平面上,它們被稱為立體圖形,如長方體、圓柱、圓錐等;有些立體圖形是由一些平面圖形圍成的,將它們展開成平面圖形,展開的平面圖形就叫做這個立體圖形的展開圖;
2、點、線、面、體的認識:幾何體叫做體,包圍著體的叫做面,面和面相交的地方叫作線,線和線相交的地方叫做點,線由無數個點構成;
3、直線、射線、線段的認識:經過兩個點由且只有一條直線,兩點確定一條直線,兩個點之間的連線,最短的叫做線段,線段的長度叫做這兩點的距離,由線段向一端無限延長,叫射線;
4、角:如果兩個角的和等於90°,那麼這兩個角互為餘角;如果兩個角的和等於180°,那麼這兩個角互為補角;從一個角的頂點出發。把這個角分成兩個相等的角的射線叫做這個角的平分線,把這3個相等角的兩條射線叫這個角的三分線。
第五章:整式
(一)整式
1.整式:單項式和多項式的統稱叫整式。
2.單項式:數與字母的乘積組成的式子叫單項式。單獨的一個數或一個字母也是單項式。
3.系數;一個單項式中,數字因數叫做這個單項式的系數。
4.次數:一個單項式中,所有字母的指數和叫做這個單項式的次數。
5.多項式:幾個單項式的和叫做多項式。
6.項:組成多項式的每個單項式叫做多項式的項。
7.常數項:不含字母的項叫做常數項。
8.多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
9.同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
10.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(二)整式加減整式加減運算時,如果遇到括弧先去括弧,再合並同類項。
1.去括弧:一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合並同類項。如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同。如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
2.合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。合並同類項後,所得項的系數是合並前各同類項的系數的和,且字母部分不變。
『陸』 七年級上冊數學知識點
第一章 豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形
生活中的立體圖形
柱:稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……
第二章 有理數
正有理數 整數
有理數 零 有理數
負有理數 分數
2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零
3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。
4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和-1。零沒有倒數。
5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。
正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。
6、有理數比較大小:正數大於0,負數小於0,正數大於負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。
7、有理數的運算:
(1)五種運算:加、減、乘、除、乘方
多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。
有理數加法法則:
同號兩數相加,取相同的符號,並把絕對值相加。
異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。
一個數同0相加,仍得這個數。
互為相反數的兩個數相加和為0。
有理數減法法則:減去一個數,等於加上這個數的相反數!
有理數乘法法則:
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數與0相乘,積仍為0。
有理數除法法則:
兩個有理數相除,同號得正,異號得負,並把絕對值相除。
0除以任何非0的數都得0。
注意:0不能作除數。
有理數的乘方:求n個相同因數a的積的運算叫做乘方。
正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。
(2)有理數的運算順序
先算乘方,再算乘除,最後算加減,如果有括弧,先算括弧裡面的。
(3)運算律
加法交換律 加法結合律
乘法交換律 乘法結合律
乘法對加法的分配律
8、科學記數法
一般地,一個大於10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學記數法。(n=整數位數-1)
第三章 整式及其加減
1、代數式
用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;
②代數式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。
※代數式的書寫格式:
①代數式中出現乘號,通常省略不寫,如vt;
②數字與字母相乘時,數字應寫在字母前面,如4a;
③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;
④數字與數字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意:分數線具有“÷”號和括弧的雙重作用。
⑥在表示和(或)差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如平方米。
2、整式:單項式和多項式統稱為整式。
①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。
注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個“1”應省略不寫,如-ab的系數是-1,a3b的系數是1。
②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。
3、同類項:所含字母相同,並且相同字母的指數也相同的項叫做同類項。
注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。
②同類項與系數無關,與字母的排列順序無關;
③幾個常數項也是同類項。
4、合並同類項法則:把同類項的系數相加,字母和字母的指數不變。
5、去括弧法則
①根據去括弧法則去括弧:
括弧前面是“+”號,把括弧和它前面的“+”號去掉,括弧里各項都不改變符號;括弧前面是“-”號,把括弧和它前面的“-”號去掉,括弧里各項都改變符號。
②根據分配律去括弧:
括弧前面是“+”號看成+1,括弧前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。
6、添括弧法則
添“+”號和括弧,添到括弧里的各項符號都不改變;添“-”號和括弧,添到括弧里的各項符號都要改變。
7、整式的運算:
整式的加減法:(1)去括弧;(2)合並同類項。
第四章 基本平面圖形
2、直線的性質
(1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)
(2)過一點的直線有無數條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
3、線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的大小關系和它們的長度的大小關系是一致的。
4、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。
6、角的表示
角的表示方法有以下四種:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
7、角的度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
9、角的性質
(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。
(2)角的大小可以度量,可以比較,角可以參與運算。
10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。
從一個n邊形的同一個頂點出發,分別連接這個頂點與其餘各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。
12、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。
第五章 一元一次方程
1、方程
含有未知數的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數的值叫做方程的解。
3、等式的性質
(1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。
(2)等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。
4、一元一次方程
只含有一個未知數,並且未知數的最高次數是1的整式方程叫做一元一次方程。
5、移項:把方程中的某一項,改變符號後,從方程的一邊移到另一邊,這種變形叫做移項.
6、解一元一次方程的一般步驟:
(1)去分母(2)去括弧(3)移項(把方程中的某一項改變符號後,從方程的一邊移到另一邊,這種變形叫移項。)(4)合並同類項(5)將未知數的系數化為1
第六章 數據的收集與整理
1、普查與抽樣調查
為了特定目的對全部考察對象進行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。
從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。
2、扇形統計圖
扇形統計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分佔總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個扇形所佔的百分比之和為1)
圓心角度數=360°×該項所佔的百分比。(各個部分的圓心角度數之和為360°)
3、頻數直方圖
頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。
4、各種統計圖的特點
條形統計圖:能清楚地表示出每個項目的具體數目。
折線統計圖:能清楚地反映事物的變化情況。
扇形統計圖:能清楚地表示出各部分在總體中所佔的百分比。
『柒』 七年級數學上冊第一、二單元知識點
第一章數學與我們同行
一、生活數學
1、生活中的數學
觀察、積累生活中常見的數學符號,了解它們表達的意義
如:身份證號碼、郵政編碼……
2、生活中的圖形
觀察、認識生活中的圖形,感知它們與數學知識的聯系
如:城市建築群、超市的商品……
二、活動思考
1、數學活動——動手操作、探索新知
數學活動包括觀察、試驗、操作、猜想、歸納等。
2、數學思考——規律探索
數形結合、從特殊到一般的思想方法圖形規律、數字規律
三、思想方法
轉化思想、建模思想、歸納思想、從特殊到一般……
四、常見題型
探究數字、圖形規律題
實踐操作題
圖案設計題
簡單的數字推理題
第二章有理數
一、正數和負數
1、正數和負數的概念
(1)負數:比0小的數。
(2)正數:比0大的數。
0既不是正數,也不是負數。
(3)注意:
①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)。
②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃。
3、0表示的意義
(1)0表示「沒有」,如教室里有0個人,就是說教室里沒有人;
(2)0是正數和負數的分界線,0既不是正數,也不是負數。
二、有理數
1、有理數的概念
(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)。
(2)正分數和負分數統稱為分數。
(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
2、理解:只有能化成分數的數才是有理數。
(1)π是無限不循環小數,不能寫成分數形式,不是有理數。
(2)②有限小數和無限循環小數都可化成分數,都是有理數。
3、注意:
引入負數以後,奇數和偶數的范圍也擴大了,像-2,-4,-6,-8…也是偶數,-1,-3,-5…也是奇數。
三、數軸
1、數軸的概念
(1)規定了原點,正方向,單位長度的直線叫做數軸。
(2)注意:
①數軸是一條向兩端無限延伸的直線;
②原點、正方向、單位長度是數軸的三要素,三者缺一不可;
③同一數軸上的單位長度要統一;
④數軸的三要素都是根據實際需要規定的。
2、數軸上的點與有理數的關系
(1)所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
(2)所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3.利用數軸表示兩數大小
(1)在數軸上數的大小比較,右邊的數總比左邊的數大;
(2)正數都大於0,負數都小於0,正數大於負數;
(3)兩個負數比較,距離原點遠的數比距離原點近的數小。
4.數軸上特殊的最大(小)數
(1)最小的自然數是0,無最大的自然數;
(2)最小的正整數是1,無最大的正整數;
(3)最大的負整數是-1,無最小的`負整數。
5.a可以表示什麼數
(1)a>0表示a是正數;反之,a是正數,則a>0;
(2)a<0表示a是負數;反之,a是負數,則a<0;
(3)a=0表示a是0;反之,a是0,,則a=0。
6.數軸上點的移動規律
根據點的移動,向左移動幾個單位長度則減去幾,向右移動幾個單位長度則加上幾,從而得到所需的點的位置。
四、相反數
1、相反數
只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。
注意:
(1)相反數是成對出現的;
(2)相反數只有符號不同,若一個為正,則另一個為負;
(3)0的相反數是它本身;相反數為本身的數是0。
2.相反數的性質與判定
(1)任何數都有相反數,且只有一個;
(2)0的相反數是0;
(3)互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0。
3.相反數的幾何意義
在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,並且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。
說明:在數軸上,表示互為相反數的兩個點關於原點對稱。
4.相反數的求法
(1)求一個數的相反數,只要在它的前面添上負號「-」即可求得(如:5的相反數是-5);
(2)求多個數的和或差的相反數是,要用括弧括起來再添「-」,然後化簡(如;5a+b的相反數是-(5a+b)。化簡得-5a-b);
(3)求前面帶「-」的單個數,也應先用括弧括起來再添「-」,然後化簡(如:-5的相反數是-(-5),化簡得5)
5.相反數的表示方法
(1)一般地,數a的相反數是-a,其中a是任意有理數,可以是正數、負數或0。
①當a>0時,-a<0(正數的相反數是負數)
②當a<0時,-a>0(負數的相反數是正數)
③當a=0時,-a=0,(0的相反數是0)
6.多重符號的化簡
多重符號的化簡規律:「+」號的個數不影響化簡的結果,可以直接省略;「-」號的個數決定最後化簡結果;即:「-」的個數是奇數時,結果為負,「-」的個數是偶數時,結果為正。
五、絕對值
1、絕對值的幾何定義
一般地,數軸上表示數a的點與原點的距離叫做a的絕對值,記作|a|。
2、絕對值的代數定義
(1)一個正數的絕對值是它本身;
(2)一個負數的絕對值是它的相反數;
(3)0的絕對值是0。
3、可用字母表示為
(1)如果a>0,那麼|a|=a;
(2)如果a<0,那麼|a|=-a;
(3)如果a=0,那麼|a|=0。
4、可歸納為
(1)a≥0,<═>|a|=a(非負數的絕對值等於本身;絕對值等於本身的數是非負數。)
(2)a≤0,<═>|a|=-a(非正數的絕對值等於其相反數;絕對值等於其相反數的數是非正數。)
5、絕對值的性質
任何一個有理數的絕對值都是非負數,也就是說絕對值具有非負性。所以,a取任何有理數,都有|a|≥0。即
(1)0的絕對值是0;絕對值是0的數是0.即:a=0<═>|a|=0;
(2)一個數的絕對值是非負數,絕對值最小的數是0.即:|a|≥0;
(3)任何數的絕對值都不小於原數。即:|a|≥a;
(4)絕對值是相同正數的數有兩個,它們互為相反數。即:若|x|=a(a>0),則x=±a;
(5)互為相反數的兩數的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
(6)絕對值相等的兩數相等或互為相反數。即:|a|=|b|,則a=b或a=-b;
(7)若幾個數的絕對值的和等於0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)
6、有理數大小的比較
(1)利用數軸比較兩個數的大小:數軸上的兩個數相比較,左邊的總比右邊的小;
(2)利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;異號兩數比較大小,正數大於負數。
7、絕對值的化簡
(1)當a≥0時,|a|=a;
(2)當a≤0時,|a|=-a。
8、已知一個數的絕對值,求這個數一個數a的絕對值就是數軸上表示數a的點到原點的距離,一般地,絕對值為同一個正數的有理數有兩個,它們互為相反數,絕對值為0的數是0,沒有絕對值為負數的數。
六、有理數的加減法
1.有理數的加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;
(3)互為相反數的兩數相加,和為零;
(4)一個數與零相加,仍得這個數。
2.有理數加法的運算律
(1)加法交換律:a+b=b+a
(2)加法結合律:(a+b)+c=a+(b+c)
在運用運算律時,一定要根據需要靈活運用,以達到化簡的目的,通常有下列規律:
①互為相反數的兩個數先相加——「相反數結合法」;
②符號相同的兩個數先相加——「同號結合法」;
③分母相同的數先相加——「同分母結合法」;
④幾個數相加得到整數,先相加——「湊整法」;
⑤整數與整數、小數與小數相加——「同形結合法」。
3.加法性質
一個數加正數後的和比原數大;加負數後的和比原數小;加0後的和等於原數。即:
(1)當b>0時,a+b>a
(2)當b<0時,a+b<a
(3)當b=0時,a+b=a
4.有理數減法法則
減去一個數,等於加上這個數的相反數。用字母表示為:a-b=a+(-b)。
5.有理數加減法統一成加法的意義
(1)在有理數加減法混合運算中,根據有理數減法法則,可以將減法轉化成加法後,再按照加法法則進行計算。
(2)在和式里,通常把各個加數的括弧和它前面的加號省略不寫,寫成省略加號的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
(3)和式的讀法:
①按這個式子表示的意義讀作「負8、負7、負6、正5的和」;
②按運算意義讀作「負8減7減6加5」。
七、有理數的乘除法
1.有理數的乘法法則
法則一:兩數相乘,同號得正,異號得負,並把絕對值相乘;(「同號得正,異號得負」專指「兩數相乘」的情況,如果因數超過兩個,就必須運用法則三)
法則二:任何數同0相乘,都得0;
法則三:幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數;
法則四:幾個數相乘,如果其中有因數為0,則積等於0.
2.倒數
(1)乘積是1的兩個數互為倒數,其中一個數叫做另一個數的倒數,用式子表示為a·圖片(a≠0),就是說a和圖片互為倒數,即a是圖片的倒數,圖片是a的倒數。
(2)注意:
①0沒有倒數;
②求假分數或真分數的倒數,只要把這個分數的分子、分母點顛倒位置即可;求帶分數的倒數時,先把帶分數化為假分數,再把分子、分母顛倒位置;
③正數的倒數是正數,負數的倒數是負數。(求一個數的倒數,不改變這個數的性質);
④倒數等於它本身的數是1或-1,不包括0。
3.有理數的乘法運算律
(1)乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。即ab=ba
(2)乘法結合律:三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。即(ab)c=a(bc).
(3)乘法分配律:一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,在把積相加。即a(b+c)=ab+ac
4.有理數的除法法則
(1)除以一個不等0的數,等於乘以這個數的倒數。
(2)兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
5.有理數的乘除混合運算
(1)乘除混合運算往往先將除法化成乘法,然後確定積的符號,最後求出結果。
(2)有理數的加減乘除混合運算,如無括弧指出先做什麼運算,則按照『先乘除,後加減』的順序進行。
八、有理數的乘方
1.乘方的概念求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數。
2.乘方的性質
(1)負數的奇次冪是負數,負數的偶次冪的正數。
(2)正數的任何次冪都是正數,0的任何正整數次冪都是0。
九、有理數的混合運算
做有理數的混合運算時,應注意以下運算順序:
1、先乘方,再乘除,最後加減;
2、同級運算,從左到右進行;
3、如有括弧,先做括弧內的運算,按小括弧,中括弧,大括弧依次進行。
十、科學記數法
把一個大於10的數表示成a10n的形式(其中圖片,n是正整數),這種記數法是科學記數法。