① 小學都有哪些數學知識點。(北師大版 六年級上冊)要詳細的!
北師大版六年級上冊數學的知識點教學目標(供參考)
目
標
內容
知識技能
數學素養
數與代數
數的運算
能計算實際問題中「增加百分之幾」或「減少百分之幾」。
體會百分數與現實生活的密切聯系,提高運用數學解決實際問題的能力;通過觀察、分析、歸納、類比與猜測、驗證,發展初步的合情推理,體驗數學問題的探索性和挑戰性。
能解決「比一個數增加百分之幾的數」或「比一個數減少百分之幾的數」。
能用方程解決有關百分數的逆解題。
解決與儲蓄有關的實際問題。
比的認識
理解比的意義及其與除法、分數的關系,會求比值。
運用商不變的性質或分數的基本性質化簡比。
能運用比的意義解決按照一定的比進行分配的實際問題。
空間與圖形
圖形的認識
認識圓、體會圓的特徵及圓心和半徑的作用,會用圓規畫圓。
通過觀察、操作、想像等活動,發展空間觀念。通過動手拼擺等活動,體會「化曲為直」的數學思想;結合欣賞和設計,發展想像力和創造力;提高學生靈活運用各種策略解決問題的能力。
用圓的知識解釋生活中的簡單現象。
掌握圓的周長和面積的計算方法。
利用圓規設計簡單的圖案。
運用圓的周長和面積的知識解決實際問題(包括復雜的組合圖形周長和面積的計算)。
圖形與變換
能有條理的表達一個簡單圖形經過平移、旋轉或軸對稱製作復雜圖形的過程。
通過欣賞和設計圖案,使學生感受圖形世界的神奇,發展學生的空間觀念。
能靈活運用平移、旋轉和軸對稱在方格紙上設計圖案
圖形與位置
能正確辨認從不同方向(正面、側面、上面)觀察到的立體圖形(5個小正方體)的形狀,並畫出草圖。
通過觀察物體,發現規律,不斷發展學生的空間觀念。
能根據觀察到的正面、側面、上面的平面圖形還原立體圖形。
能根據給定的兩個方向觀察到的平面圖形的形狀確定搭成的立體圖形所需小立方體的數量范圍。
利用觀察范圍隨觀察點、觀察角度的變化而改變的規律解釋生活中的一些現象。
統計與概率
數據統計
認識復式條形統計圖和復式折線統計圖,了解他們的特點。
經歷收集、整理和分析數據的過程,逐步形成統計觀念。
能根據需要選擇復式條形統計圖和復式折線統計圖有效地表示數據。
能讀懂簡單的復式統計圖,根據統計結果做出簡單的判斷和預測。
綜合實踐
數學與體育
用列表、畫圖的方式尋找解決問題的規律。
體會數學知識在體育、生活中的應用,發展數學應用意識,體會圖表的關系,學會分析量與量之間的關系,提高觀察分析能力,增強應用意識。
運用圓的有關知識計算所走彎道距離。
利用數學知識解決營養配餐問題。
生活中的數
了解收集數據的常用方法。
通過對現實生活中的數據的處理,發展數感與處理數據的能力;體會數在表達、交流和傳遞信息中的作用。
體會大數估計的策略和方法,進行簡單的估算。
了解數字的用途,知道一個「編號」中某些數字所代表的意義。
進一步體會負數的意義。
會畫折線統計圖描述事物的變化情況。
看圖找關系
從圖中分析出某些量之間的關系,並用語言表達。
發展有條理思考和表達的能力。
體會圖刻畫事物或數之間的關系,能分析一些簡單的關系。
第一單元:圓
圓的認識(一)
1.圓中心的一點叫圓心,用O表示.一端在圓心,另一端在圓上的線段叫半徑,用r表示.兩端都在圓上,並過圓心的線段叫直徑,用d表示.
2.圓有無數條半徑,有無數條直徑.
3.圓心決定圓的位置,半徑決定圓的大小.
圓的認識(二)
4.把圓對折,再對折就能找到圓心.
5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸.圓有無數條對稱軸.
6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.
圓的周長
7.圓一周的長度就是圓的周長.
8.圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14.
9.C=πd或C=πr.
10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
圓的面積
11.用S表示圓的面積, r表示圓的半徑,那麼S=πr^2 S環=π(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400
13.周長相等時,圓的面積最大.面積相等時,圓的周長最小.
第二單元:百分數的應用
百分數的應用(四)
14.利息=本金乘利率乘時間
第四單元:比的認識
15.兩個數相除,又叫做這兩個數的比.比的後項不能為0.16.比的前項和後項同時乘上或除以一個相同的數(0除外).比值不變,這叫做比的基本性質.
② 小學數學北師大版所有概念
小學1-6年級數學概念大全 三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b )*c
小學數學公式大全 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%) 長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
③ 數學北師大版(新版)五年級學習了什麼重點是什麼難點是什麼
溢。』又道是:『登高必跌重。』如今我們家赫赫揚揚,已將百載,一日倘或樂極生悲,若應了那句『樹倒猢猻散』的俗語,豈不虛稱了一世詩書舊族了?」鳳姐聽了此話,心胸不快,十分敬畏,忙問道:「這話慮的極是,但有何法可以永保無虞?」秦氏冷笑道:「嬸娘好痴也!『否極泰來』,榮辱自古周而復始,豈人力所能常保的?但如今能於榮時籌畫下將來衰時的世業,亦可以常遠保全了。即如今日諸事俱妥,只有兩件未妥,若把此事如此一行,則後日可保無患了。」
鳳姐便問道:「什麼事?」秦氏道:「目今祖塋雖四時祭祀,只是無一定的錢糧;第二,家塾雖立,無一定的供給。依我想來,如今盛時固不缺祭祀供給,但將來
④ 北師大版小學數學 數學好玩有哪些內容
北師大版五年級數學上冊全冊教案 第2頁 五年級第一學期數學教案 教 學 工 作 計 劃 一、教材分析 1、教材簡析 數與代數 (1)第一單元「倍數與因數」,主要是自然數的認識,倍數與因數,2,5,3倍數的特徵,質數與合數,奇數與偶數。
⑤ 北師大版小學數學知識點總結
2009畢業班小學數學總復習資料
常用的數量關系式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長 )
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
常用單位換算
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
時間單位換算
1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
基本概念
第一章 數和數的運算
一 概念
(一)整數
1 整數的意義
自然數和0都是整數。
2 自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1 小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
⑥ 北師大版的小學數學知識點總結!
常用單位換算
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算:
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體積單位換算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算: 1元=10角 1角=10分 1元=100分
時間單位換算:
1世紀=100年 1年=12月 大月(31天)
有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
⑦ 小學一年級北師大版數學期中考試復習重點
復習的形式是很多的,如課堂復習、單元復習、期末復習等。
課堂復習有三種:講新課前,復習與之有關的舊知識,這叫做准備復習;老師講完課後,往往要趁熱打鐵做點練習,這是以消化為目的的准備性復習;一節課將結束時,將本節所學內容進行梳理、歸納、小結,這是以吸收為目的的梳理性復習。
課後復習以消除遺忘、強化記憶為目標,不管老師是否留作業,都應當對照課堂筆記與教材進行比較性復習,然後再做作業。
單元復習是指完成了一章或一組內容後的復習,主要採取比較異同,尋找內在聯系,篩選累積的方式進行。
期末復習主要是將平時分散學習的知識分門別類地進行分析綜合,系統歸類的過程。
在我們的學習生活中,最寶貴的時間是課後復習,因為防止遺忘的最有效辦法就是及時復習。心理學的研究表明,記憶是有規律可循的,學過的知識如果不加以復習就會忘記,過一天會忘記一半以上,經過兩天就會忘記2/3左右,以後遺忘的數量會逐漸減少。因此,學習後若不及時復習,就會大大增加復習的困難,降低學習的效率。
為了提高復習的效率,我們要在復習時採取一定的方法,從不同角度做出合理的安排。在時間安排上,課後復習至少安排兩次。第一次利用課間休息時間,用腦子復習一下這節課的要點,第二次復習應安排在晚上,讀一下課堂筆記,對照教科書進行。
在對復習方式的運用上,可根據自己的實際情況靈活使用。
常用的復習方法有:
(1)嘗試回憶法。即在復習時,先把老師講過的內容在頭腦中回憶一遍,然後再打開書或筆記本進行對照,對回憶模糊不清或根本回憶不起來的知識再有針對性地進行復習,這樣做不僅可以強化記憶,而且能夠逐步養成積極思考的習慣;
(2)要點法。即在復習過程中,尋求知識中的要點,抓住要點也就抓住了問題的主幹。如復習課文時,就可以把重點詞、每段的關鍵句、承上啟下的過渡句等用醒目的顏色標上記號,使這些詞句作為記憶的支撐點,抓住幾個關鍵詞句,也就抓住了整篇課文的內容;
(3)比較法。即找出各科知識間的特點和共同點,通過同中求異或異中求同來強化復習效果/
⑧ 北師大版小學三年級數學下冊教學重點知識有哪些
一、教學內容與教學目標:
本冊教材採用數與代數、空間與圖形、統計與概率和實踐與綜合運用四個領域的內容同時混編的方式,各個領域包括以下內容:
數與代數:第一單元"元、角、分與小數"。結合購物的具體情境初步理解小數的意義,能認、讀、寫簡單的小數;感受比較小數大小的過程;會進行一位小數的 加減運算,能解決一些相關的簡單問題;能運用小數表示日常生活中的一些事物,並進行交流。第三單元"乘法"。會計算兩位數乘兩位數的乘法;能結合具體情境進行估算,並解釋估算的過程;能靈活運用不同的方法解決生活中的簡單問題,並能對結果的合理性進行判斷。第五單元"認識分數"。能結合具體情境與直觀操作初步理解分數的意義,能認、讀、寫簡單的分數;感受比較分數大小的過程;會計算同分母分數的加減運算, 能解決一些相關的簡單問題。
空間與圖形:第二單元"對稱、平移和旋轉"。結合實例,感知平移、旋轉、軸對稱現象;能在方格紙上畫出一個簡單圖形沿水平、豎直方向平移後的圖形;通過觀察、操作,認識軸對稱圖形,並能在方格紙上畫出簡單是軸對稱圖形。第四單元"面積"。結合實例認識面積的含義,能用自選單位估計和測量圖形的面積,體會統一面積單位的必要性,體會並認識面積單位,會進行簡單的面積單位的換算;探索並掌握長方形、正方形的面積公式, 能估算給定的長方形、正方形的面積。
統計與概率:第六單元"統計與可能性"。通過豐富的實例,了解平均數的意義,體會學習平均數的必要性,會求簡單數據的平均數;能對一些簡單事件發生的可能性做出描述,並和同伴交換想法。
實踐活動: 到商店調查三種商品的價格,做好記錄。與同學比一比同一種商品的價格。找一找生活中的小數,並與同伴說一說。用紙剪出一個你喜歡的圖形,通過平移或旋轉繪制一幅圖案。設計旅遊計劃。廚房鋪地轉的選擇方案 製作七巧板。調查小組同學的身高,並計算小組的平均身高,並計算小組的平均身高。在報刊上找出與平均數有關的信息,並與同伴說一說。
二、教學重點:
本冊教材中的小數與分數、圖形的變換與面積等概念,都是學生初次接觸的重要基礎知識,讓學生在具體生動的情境中學習和理解它們是至關重要的。
三、教學難點:
培養學生應用數學的意識與獨立解決問題的能力。要把數學學習與解決生活中的數學 問題結合起來,充分利用教材所提供的數學與生活緊密聯系的線索,培養學生學會用數學的眼光觀察現實生活,從中發現數學問題、提出數學問題、並解決數學問題,體會數學的廣泛應用與實際價值,獲得良好的情感體驗。
四、學情分析:
本學期我所任教的三班,大部分學生對數學比較感興趣,接受能力較強,學習態度較端正。尤其是男同學,學習基礎也還比較好,但是有部分學生自覺性不夠,不能及時完成作業,或者作業質量較差,對於學習數學有一定困難。所以在新的學期里,在端正學生學習態度的同時,應加強培養他們的各種學習數學的能力,以提高成績。
五、教學資源分析:
重視學生的生活經驗,密切數學與現實的聯系,引導學生在理解的基礎上學習數學,促進學生對數學的認識。教材通過"數與計算、量與計量、空間與圖形、統計與概率、實踐與綜合應用"基本領域反映運用數學研究現實世界的基本過程,有機的滲透數感、符號感、空間觀念、統計思想、推理意識等重要的數學思想和思維方式,並以此為主線選擇和安排教學內容。
展現知識的產生和應用過程,形成"問題情境--建立模型--解釋與應用"的基本敘述模式,引導學生逐步形成多樣化的、科學合理的學習方式。通過上述的過程,學生將逐步掌握基本的數學知識和方法,形成良好的數學思維習慣和應用意識,提高自己解決問題的能力,感受數學思考的樂趣,增進學好數學的信心,獲得對數學較為全面的體驗與理解。
以數學活動為線索安排教材內容,促進學生自主地參與、探索和交流。按照《標准》的要求,教材突破了以往的以例題為中心的呈現方式,以學生的數學活動為線索,展開相關知識的學習。教材設立了"看一看、做一做、想一想、說一說、讀一讀、我的成長足跡、問題銀行"等欄目,促進學生在觀察、操作、思考、交流、反思等活動中,掌握基本的知識和技能,發展數學思考和解決問題的能力,初步形成良好的情感、態度與價值觀。
六、提高教學質量的具體措施:
(一)切實加強基礎知識和基本技能的教學。
數學基礎知識的理解。教學時在使學生掌握數學概念、法則、數量關系的同時,應更重視數學方法的訓練,逐步形成良好的思維方式和運用數學的意識。處理好基本訓練與創造性思維發展及後繼學習的關系。小學生的創造性思維是在數學學習的"再創造"過程中逐步得到發展的,而 "再創造"的前提是通過必要的基本訓練使學生形成扎實的基本功。
(二)重視引導學生自主探索,培養學生的創新意識和學習數學的興趣。
本冊教材設計了適量探索性和開放性的數學問題,給學生提供自主探索的機會和一個比較充分的思考空間。培養學生肯於鑽研、善於思考、勤於動手的科學態度。教師要關注學生的個體差異,尊重學生的創造精神。對學生在探索過程中遇到的問題,要適時,有效的幫助和引導。
(三)重視培養學生的應用意識和實踐能力。
數學教學應體現"從問題情境出發,建立模型,尋求結論,應用與推廣"的基本過程。在日常的數學活動中要注意小課題研究和實習作業等實踐活動,對這方面的內容不但不能隨意刪減,而且要加強這方面內容安排的密度和強度。
(四)把握教學要求,促進學生發展。
教師要善於駕馭教材,把握知識的重點和難點以及知識間的內在聯系,根據學生的年齡特點和教學要求,開展教學活動。要注意在直觀感知廣泛的背景下,通過自身體驗在分析、整理的過程中學習概念,不要用死記硬背的方法。
七、促進教學評估方法。
教學評估要有利於學生的發展,注重對學生學習過程的考察。知識和技能的評估,試題類型要多樣化。評價應體現激勵的作用。
⑨ 小學數學3--6年級(北師大版)各章節知識點歸納及典型例題名稱
你這是找的奧數內容還是北師大版的課內知識總結?
課內知識沒有那麼多的名稱,只有分數加法、圖形的認識等等?
而你舉的例子:行程問題、差倍問題等等都是課外奧數的內容!
到底問什麼問題?