1. 高考數學最難的壓軸題解題技巧
高考數學壓軸題綜合性比較強,一道題就會涉及很多的知識點,基本都是為那些學霸們准備的。但是,有時間就去試一試,能拿一分就多拿一分。下面是我整理的高考壓軸題型以及壓軸題的解題技巧。
立體幾何題,證明題注意各種證明類型的方法(判定定理、性質定理),注意引輔助線,一般都是對角線、中點、成比例的點、等腰等邊三角形中點等等,理科其實證明不出來直接用向量法也是可以的。計算題主要是體積,注意將字母換位(等體積法);
線面距離用等體積法。理科還有求二面角、線面角等,用建立空間坐標系的方法(向量法)比較簡單,注意各個點的坐標的計算,不要算錯。
圓錐曲線題,第一問求曲線方程,注意方法(定義法、待定系數法、直接求軌跡法、反求法、參數方程法等等)。一定檢查下第一問算的數對不,要不如果算錯了第二問做出來了也白算了。
第二問有直線與圓錐曲線相交時,記住「聯立完事用聯立」,第一步聯立,根據韋達定理得出兩根之和、兩根之差、因一般都是交於兩點,注意驗證判別式>;0,設直線時注意討論斜率是否存在。
第二步也是最關鍵的就是用聯立,關鍵是怎麼用聯立,即如何將題里的條件轉化成你剛才聯立完的x1+x2和x1x2,然後將結果代入即可,通常涉及的題型有弦長問題(代入弦長公式)、定比分點問題(根據比例關系建立三點坐標之間的一個關系式(橫坐標或縱坐標),再根據根與系數的關系建立圓錐曲線上的兩點坐標的兩個關系式,從這三個關系式入手解決)、點對稱問題(利用兩點關於直線對稱的兩個條件,即這兩點的連線與對稱軸垂直和這兩點的中點在對稱軸上)、定點問題(直線y=kx+b過定點即找出k與b的關系。
高考導數壓軸題考察的是一種綜合能力,其考察內容方法遠遠高於課本,其涉及基本概念主要是:切線,單調性,非單調,極值,極值點,最值,恆成立,任意,存在等。
1.一般題目中會有少量文字描述,所以就會涉及文字的簡單翻譯。
2.題目中最核心的描述為各類式子:主要為普通類型:一般涉及三次函數,指對數,分式函數,絕對值函數,個別情況會涉及三角函數,特殊類型:主要含有x1,x2,f(x1),f(x2)類型。
解題思路:文字翻譯處理一般較簡單,核心為式子運算變形處理,對於特定式子主要通過模板解決,重點是導數壓軸題中一般式子運算變形處理策略,同時會涉及一些復雜拓展圖形的認識和快速作圖能力。
2. 高中數學,立體幾何題要把高考題第一問做出來需要會哪些知識點啊,剛學,學的很模糊,不知道怎麼拿分
高考立幾第一問通常都是證明題,要麼就是計算某一個參數,都是很簡單很好拿分的那種。
立體幾何主要是圖形的線與線、線與面、面與面之間的關系,比如怎麼由線線平行證明線面平行,怎麼由線面垂直證明面面垂直,各需要什麼條件。你可以按照這樣的邏輯把這三者之間如何由一個條件證明另一個條件(平行和垂直)入手整理一下思路,做一個框架。
當然最重要的還是運用,多做做題熟悉證明所需的條件即可。
記得,因為第一問很簡單,所以改卷老師會抓細節,比如得出這個結果需要幾推一(幾個條件推一個結論)老師會數的,如果一個條件少就扣一分,所以千萬不要跳步!
3. 高中數學立體幾何解題方法
在高考數學立體幾何題型訓練中,大家首先要把基本概念理解到位,然後配合題型訓練更好地掌握模塊精髓。下面是我為大家整理的關於高中數學立體幾何解題 方法 ,希望對您有所幫助。歡迎大家閱讀參考學習!
1高中數學立體幾何解題方法
簡單地說,《考試說明》就是對考什麼、考多難、怎樣考這三個問題的具體規定和解說。《教學大綱》則是編寫教科書和進行教學的主要依據,也是檢查和評定學生學業成績、衡量教師教學質量的重要標准。我們可以結合上一年的高考數學評價 報告 ,對《考試說明》進行橫向和縱向的分析,發現命題的變化規律。
2 學習計劃
弄清問題。也就是明白「求證題」的已知是什麼?條件是什麼?未知是什麼?結論是什麼?也就是我們常說的審題。
擬定計劃。找出已知與未知的直接或者間接的聯系。在弄清題意的基礎上,從中捕捉有用的信息,並及時提取記憶網路中的有關信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構思出一個成功的計劃。即是我們常說的思考。
執行計劃。以簡明、准確、有序的數學語言和數學符號將解題思路表述出來,同時驗證解答的合理性。即我們所說的解答。回顧。對所得的結論進行驗證,對解題方法進行 總結 。
3運算技巧
以「錯」糾錯,查漏補缺:這里說的「錯」,是指把平時做作業中的錯誤收集起來。高三復習,各類試題要做幾十套,甚至上百套。如果平時做題出錯較多,就只需在試卷上把錯題做上標記,在旁邊寫上評析,然後把試卷保存好,每過一段時間,就把「錯題筆記」或標記錯題的試卷看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以後再看這本書時就會有所側重。查漏補缺的過程就是 反思 的過程。
以本為本,把握通性通法:近幾年高考數學試題堅持新題不難、難題不怪的命題方向,強調「注意通性通法,淡化特殊技巧」。就是說高考最重視的是具有普遍意義的方法和相關的知識。例如,將直線方程代入圓錐曲線方程,整理成一元二次方程,再利用根的判別式、求根方式、韋達定理、兩點間距離公式等可以編制出很多精彩的試題。盡管復習時間緊張,但我們仍然要注意回歸課本。回歸課本,不是要強記題型、死背結論,而是要抓綱悟本,對著課本目錄回憶和梳理知識,把重點放在掌握例題涵蓋的知識及解題方法上,選擇一些針對性極強的題目進行強化訓練、復習才有實效。
4幾何公式
1.把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
2.任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
3.正n邊形的每個內角都等於(n-2)×180°/n
4.正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
5.正n邊形的面積sn=pnrn/2 p表示正n邊形的周長
6.正三角形面積√3a/4 a表示邊長
7.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
8.弧長計算公式:l=nπr/180
9.扇形面積公式:s扇形=nπr2/360=lr/2
10.內公切線長=d-(r-r)外公切線長=d-(r+r)
高中數學立體幾何解題方法相關 文章 :
1. 高中數學立體幾何如何學
2. 高二數學立體幾何大題的八大解題技巧
3. 高中數學立體幾何學習的方法
4. 高中數學立體幾何核心考點與學習方法
5. 高考文科數學立體幾何解題技巧
6. 高二數學立體幾何知識點學習方法
7. 高三立體幾何學習方法
8. 高中數學立體幾何習題及答案
9. 高中數學大題的解題技巧及解題思想