導航:首頁 > 數字科學 > 數學的概數是什麼

數學的概數是什麼

發布時間:2023-06-07 21:46:43

❶ 數學的具體概念是什麼

數學是研究數量、結構、變化以及空間模型等概念的一門學科。通過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
數學屬性是任何事物的可量度屬性,即數學屬性是事物最基本的屬性。可量度屬性的存在與參數無關,但其結果卻取決於參數的選擇。例如:時間,不管用年、月、日還是用時、分、秒來量度;空間,不管用米、微米還是用英寸、光年來量度,它們的可量度屬性永遠存在,但結果的准確性與這些參照系數有關。
數學是研究現實世界中數量關系和空間形式的科學。簡單地說,是研究數和形的科學。由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數。
基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。
今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現。
創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。
詞源 數學(mathematics;希臘語:μαθηματικ�0�4)這一詞在西方源自於古希臘語的μ�0�4θημα(máthēma),其有學習、學問、科學,以及另外還有個較狹意且技術性的意義-「數學研究」,即使在其語源內。其形容詞μαθηματικ�0�2�0�9(mathēmatikós),意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικ�0�4(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。
(拉丁文:Mathemetica)原意是數和數數的技術。
我國古代把數學叫算術,又稱算學,最後才改為數學。

❷ 談談你的理解,數學是什麼

數學是研究數量、結構、變化以及空間模型等概念的一門學科.通過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生.數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理.
數學屬性是任何事物的可量度屬性,即數學屬性是事物最基本的屬性.可量度屬性的存在與參數無關,但其結果卻取決於參數的選擇.例如:時間,不管用年、月、日還是用時、分、秒來量度;空間,不管用米、微米還是用英寸、光年來量度,它們的可量度屬性永遠存在,但結果的准確性與這些參照系數有關.
數學是研究現實世界中數量關系和空間形式的科學.簡單地說,是研究數和形的科學.由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數.
基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日.
今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等.數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展.數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現.
創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……).

❸ 數學的定義是什麼

定義
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語 : mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數 τα μαθηματικά(ta mathēmatiká)。以前中國古代把數學叫算術,又稱算學,最後才改為數學。
數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
關於數學的定義,《中國大網路全書。數學卷》吳文俊先生是這樣寫的:「數學是研究現實世界中數量關系和空間形式的,簡單地說,是研究數和形的科學。這個定義來自恩格斯的《自然辯證法》:」數學是數量的科學,它從數量這個概念開始,它給這個概念下了一個殘缺不全的定義,然後再把未包含在定義中的數量的其他基本規定性當作公理從外部引了進來,在這以後,這些規定性就顯現為沒有證明過的東西,自然也就顯現為數學上不能證明的東西。數量的分析會指出這一切公理式的規定是數量的必然的規定。恩格斯再另一篇文章中說:「我們的幾何學是從空間關系出發,我們的算術和代數學是從數量出發。

我們讀大學時用的是蘇聯的教材,關於數學的定義就是吳文俊先生所寫的定義。

對於這個定義,有各種不同的理解。錢學森先生認為數學是社會科學和自然科學的基礎。哲學是社會科學和自然科學的概括。有人對數學來源於現實世界有不同的看法,比如「哥德巴赫猜想」來源於現實世界的哪一部分,很難講清楚。齊民友先生認為「數學的生長像竹子,根在大地,然後自己一節一節向上長,間或爆出新筍,長成新竹。若干年後,竹子開花,結成種子,重回大地。」

西方的數學家有不同的看法,例如林恩。斯蒂恩認為:「傳統上把數學描述為數與形的科學,但是隨著數學家開發的領域擴展到群論、統計學、最優化和控制理論之中,數學的歷史的邊界已經完全消失,同樣數學的應用的邊界也沒有了:它不再只是物理學和工程的語言,現在數學已經成為銀行、製造業、社會科學以及醫葯必可不少的工具,如果從這個廣泛的背景來觀察,我們看到數學不只是討論數與形,而且還討論各種類型的模式和次序。

我認為西方的數學家的看法是對的,恩格斯是總結19世紀數學給出的定義,用這個觀點看19世紀以前的數是可以的,但是數學發展了,現在的數學成果90%是20世紀做出的。
恩格斯說:數學的應用:在剛體力學中是絕對的,在氣體力學中是近似的。在液體力學就比較困難了;在物理學中是試驗性的和相對的;在化學中是最簡單的一次方程式;在生物學中等於零。「現在的情況完全不同,過幾天我會將些數學在物理學、生物學及社會科學中的應用。

西方對數學還把它看成是文化的一部分,對於這一點,很多人不認識,北京大學數學系早在1989年由鄧東皋、孫小禮、張祖貴主編《數學與文化》一書。編者精選了一批國內外著名的數學家以及研究數學的家哲學的文章,從各個側面來說明來說明數學在整個文化中的地位。1994年高考大綱也「要求考生具有一定的數學視野,認識數學的科學價值與人文價值,崇尚數學的理性精神,形成審慎的思維習慣,體會數學的美學意義。」

美國應用數學家、數學史家克萊因談到研究數學的動力有的是為了解決社會需要。但他認為進行數學創造的最主要趨勢力是對美的追求。他認為「如果美的組成和藝術作品的特徵包括洞察力和想像力,對稱性和比例、簡潔,以及精確地適應達到目的的手段,那麼數學就是一門具有其特有完美性的藝術。」就是說,數學是科學也是藝術。

❹ 數學又叫什麼

數學叫作算術,又稱算學,最後才改為數學。

中國古代的算術是六藝之一(六藝中稱為「數」)。數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。

從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

中國數學簡史:

數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。

符號:

我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的。在此之前,數學是用文字書寫出來,這是個會限制住數學發展的刻苦程序。

現今的符號使得數學對於人們而言更便於操作,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼。

以上內容參考網路—數學

❺ 數學概念有哪些

概念 (mathematical concepts):是人腦對現實對象的數量關系和空間形式的本質特徵的一種反映形式,即一種數學的思維形式。

在數學中,作為一般的思維形式的判斷與推理,以定理、法則、公式的方式表現出來,而數學概念則
什麼是數學數學思想方法有哪些數學思維方法數學數學思維數學是什麼數學定理大全數學方法有哪些數學的意義數學思想
概述
正確地理解和形成一個數學概念,必須明確這個數學概念的內涵--對象的"質"的特徵,及其外延--對象的"量"的范圍。一般來說,數學概念是運用定義的形式來揭露其本質特徵的。但在這之前,有一個通過實例、練習及口頭描述來理解的階段。比如,兒童對自然數,對運算結果--和、差、積、商的理解,就是如此。到小學高年級,開始出現以文字表達一個數學概念,即定義的方式,如分數、比例等。有些數學概念要經過長期的醞釀,最後才以定義的形式表達,如函數、極限等。定義是准確地表達數學概念的方式。

許多數學概念需要用數學符號來表示。如dy表示函數y的微分。數學符號是表達數學概念的一種獨特方式,對學生理解和形成數學概念起著極大的作用,它把學生掌握數學概念的思維過程簡約化、明確化了。許多數學概念的定義就是用數學符號來表達,從而增強了科學性。

許多數學概念還需要用圖形來表示。有些數學概念本身就是圖形,如平行四邊形、棱錐、雙曲線等。有些數學概念可以用圖形來表示,比如y=x+1的圖像。有些數學概念具有幾何意義,如函數的微分。數形結合是表達數學概念的又一獨特方式,它把數學概念形象化、數量化了。

總之, 數學概念是在人類歷史發展過程中,逐步形成和發展的。

數學概念
一、基本概念

1.描述統計。

通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。

2.概率的統計定義。

人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現"出現正面"或"出現反面"的次數大約各占總拋擲次數的: 左右。這里的"大量重復"是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:

可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。

例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;

某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?

因為前30年出現晴天的頻率為0.83,所以概率大約是0.83

❻ 什麼是數學!

數學是科學和我們日常生活的核心

數學是處理形狀、數量和排列邏輯的科學。數學就在我們身邊,在我們所做的一切中。它是我們日常生活中一切事物的基石,包括移動設備、計算機、軟體、建築(古代和現代)、藝術、貨幣、工程甚至體育。

自從有歷史記錄以來,數學的發現一直處於每個文明社會的前沿,甚至最原始和最早的文化都在使用數學。數學家雷蒙德-L-懷爾德(Raymond L. Wilder)在他的《數學概念的演變》(Dover Publications,2013年)一書中概述了對數學的需求,因為世界各地的社會要求越來越復雜,需要更先進的數學解決方案。

一個社會越復雜,數學需求就越復雜。原始部落需要的不過是計數的能力,但也用數學來計算太陽的位置和狩獵的物理學。"所有的記錄,包括人類學和歷史記錄都表明,計數以及最終作為計數工具的數字系統構成了所有文化中數學元素的開端,"懷爾德在1968年寫道。

這些抽象的問題和技術性問題是純數學試圖解決的,這些嘗試為人類帶來了重大發現,包括阿蘭-圖靈在1937年提出的通用圖靈機理論。這台機器開始是一個抽象的想法,後來為現代計算機的發展奠定了基礎。純粹數學是抽象的,基於理論的,因此不受物理世界的限制。

根據格瑞利(Goriely)的說法,"應用數學對於純數學來說,就像流行音樂對於古典音樂一樣"。純粹和應用並不相互排斥,但它們根植於數學和問題解決的不同領域。盡管純數學和應用數學所涉及的復雜數學超出了大多數人的理解范圍,但從這些過程中開發出來的解決方案影響並改善了許多人的生活。

❼ 數學的定義是什麼

數學的定義是什麼?
數學(mathematics或maths),是研究數量、結構、變化、空間以及資訊等概念的一門學科,從某種角度看屬於形式科學的一種。

而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
什麼是數學,數學的概念
數學是研究空間形式和數量關系的科學,是刻畫自然規律和社會規律的科學語言和有效工具。數學科學是自然科學、技術科學等科學的基礎,並在經濟科學、社會科學、人文科學的發展中發揮越來越大的作用。數學的應用越來越廣泛,正在不斷地滲透到社會生活的方方面面,它與計算機技術的結合在許多方面直接為社會創造價值,推動著社會生產力的發展。數學在形成人類理性思維和促進個人智力發展的過程中發揮著獨特互、不可替代的作用。數學是人類文化的重要組成部分,數學素質是公民所必須具備的一種基本素質。

-------選自

數學中 <=> 是什麼意思?
數學中 <=> 是代釘"推理中左邊可以推出右邊,右邊也可推出左邊"的意思,它讀作「等價於」。

例如:a、b、c、d都不為0.a∶b=c∶d<=>ad=bc


數學中的【項】是什麼意思?
便於稱呼、記憶、說明、使用,給式子的一部分取的名字,數學屆通用。

-a是一項,

1+x+xy+xyz就是四項

分別是

1,x,xy,xyz

3x-8y+2z-6就是四項

分別是

3x, -8Y, 2z, -6

❽ 什麼是數學數學在現實生活中的作用有什麼

引言:說起數學這個名詞,很多人都會想到數學這門學科。確實從小學到大學甚至學到更高的層次都離不開數學,那麼到底什麼是數學呢?數學在現實生活中究竟有哪些作用呢?

三、生活中的數學

說起生活中的數學普遍一些的,就是加減乘除這些基本的計算了,因為這些數字都是跟錢有關的。但是實際上數學中最廣泛的應用還是在各種學科的基礎理論支撐,比如說財經中就需要運用到數學來進行計算以及報表的分析。而物理學科也是需要數學的。尤其是計算機,其實計算機的基礎就是通過各種數字的排列來表達信息的。同時數學在各種機密計算以及航天事業中的作用也是不容小覷的。

❾ 數學的定義是什麼

數學的定義
定義1:
還是一百多年前,恩格斯給數學下的定義是「研究客觀世界的數量關系和空間形式的科學」,空間形式就是指的幾何學
源自: 高師幾何教學改革的設想 《楚雄師專學報》 2001年 陳萍
來源文章摘要:本文在反思師專幾何教學現狀的基礎上 ,提出改革幾何教學的一些建議
定義2:
數學定義是對數學發展的概括和總結.必然具有其階段性與局限性,不存在適合任何時期亘古不變的數學定義.3.現代數學時期(19世紀末以來)現代數學時期是以1873年康托爾(G·Cantor)建立集合論為起點
源自: 從「數學是什麼」談數學及數學教育 《零陵學院學報》 2004年 肖家洪
來源文章摘要: 數學是什麼?這是一個公認的難於回答的問題.1941年,美國數學家R·柯朗與H·羅賓斯合作寫了一本書,題目就是《數學是什麼》.該書緣何不以「什麼是數學」為題,我想二者是否有所區別,「數學是什麼」,
定義3:
恩格斯在《反杜林論》中,將數學定義為:「純數學的研究對象是客觀世界的空間形式與數量關系」.這在客觀上完整地概括了這一時期數學的對象和本質,因而被譽為「經典定義」
源自: 從「數學是什麼」談數學及數學教育 《零陵學院學報》 2004年 肖家洪
來源文章摘要: 數學是什麼?這是一個公認的難於回答的問題.1941年,美國數學家R·柯朗與H·羅賓斯合作寫了一本書,題目就是《數學是什麼》.該書緣何不以「什麼是數學」為題,我想二者是否有所區別,「數學是什麼」,
定義4:
他說,數學的定義是『』研究數量關系和空間形式的學科」.首先,它的表達形式簡潔、嚴謹,毫無紙漏和瑕疵.其次,數學的分支豐富多樣,為不同興趣的科學家提供了無限寬廣的可能性,具有廣裹之美
源自: 沉浸在奧妙王國的中國數學家 《瞭望》 2002年 浦樹柔
來源文章摘要:有些木訥,有些內向,總皺著眉頭思考玄奧晦澀的數學問題,走路沒准還會撞在電線桿上,這也許是許多人心中給「數學家」描繪的一幅「漫畫像」.數學真的離我們那麼遠嗎?數學家都那麼古怪可笑嗎?8月下旬在北京召開的國際數學家大會,將迎來4000多位來自世界各地的數學家,屆時人們可以一睹其群體風采.
定義5:
過去說的數學的定義是恩格斯在《自然辯證法》中提出來的他說數學是研究客觀世界的數量關系和空間形式的.恩格斯這個定義是19世紀提出來的隨著20世紀數學的發展很多東西用這個定義概括不了
源自: 數學的力量 《安徽科技》 2002年 丁石孫
定義6:
在邵雍看來先天之學是以「數」為其根本的所以他的學說又直稱為「數學」.與邵雍同時的道學家程領曾經風趣地說:「堯夫(邵雍)欲傳數學與某兄弟某兄弟那得功夫要學須是二十年功夫
源自: 道教燈儀與易學關系考論 《周易研究》 2000年 詹石窗
來源文章摘要:燈儀是道教儀式之中的重要品類.它的形成具有深遠的民俗學淵源和思想基礎.就理論角度來說,道教之燈似乃以傳統易學為結構框架.本文選擇了道教燈儀中的幾種要代表性的形式進行考察.作者通過文本的解讀與歷史追索,認為此類燈儀不僅貫穿著易學的象數法門,而且蘊含著深刻的易學義理觀念.

閱讀全文

與數學的概數是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:702
乙酸乙酯化學式怎麼算 瀏覽:1370
沈陽初中的數學是什麼版本的 瀏覽:1315
華為手機家人共享如何查看地理位置 瀏覽:1008
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:845
數學c什麼意思是什麼意思是什麼 瀏覽:1367
中考初中地理如何補 瀏覽:1257
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:669
數學奧數卡怎麼辦 瀏覽:1347
如何回答地理是什麼 瀏覽:987
win7如何刪除電腦文件瀏覽歷史 瀏覽:1020
大學物理實驗干什麼用的到 瀏覽:1446
二年級上冊數學框框怎麼填 瀏覽:1657
西安瑞禧生物科技有限公司怎麼樣 瀏覽:821
武大的分析化學怎麼樣 瀏覽:1210
ige電化學發光偏高怎麼辦 瀏覽:1299
學而思初中英語和語文怎麼樣 瀏覽:1603
下列哪個水飛薊素化學結構 瀏覽:1386
化學理學哪些專業好 瀏覽:1450
數學中的棱的意思是什麼 瀏覽:1015