1. 三年級的數學題應用題怎麼講
小學三年級應用題及解題思路
提示:在分析一般應用題是題的數量關系時,一定要弄清題目中的條件和問題,哪些表示大數,哪些表示小數,哪些表示相差數,哪些表示部分數,哪些表示總數,哪些表示一倍數,哪些表示幾倍數……。經常進行應用題練習,可以拓展自己的思維,提高解決實際問題的能力,使自己的頭腦更加靈活、更加聰明。
例1、學校共買來600本圖書,其中故事書480本,其餘是連環畫。故事書比連環畫多多少本?
分析與解答:要求"故事書比連環畫多多少本"必須知道故事書和連環畫的本數,根據題意,應先求連環畫的本數,再求多的本數。
(1)
(2)
試一試1:慶"六、一"活動中,三(5)班做了50朵花,其中紅花38朵,其餘是綠花。紅花比綠花多多少朵?
2. 怎樣教三年級面積應用題
這個可以是新授課、復習課或專題課。
1.先簡要復習一下三角形的高、底的含義以及三角形面積公式,最好結合實例說明。
2.讓學生進行自我小組探究,最好2-4人一組。分成兩題,第一題難度較為簡單,2人一組,對題目進行討論並列式求值;第二題難度增大,最好是有談枯多種解法的,4人一組,進行討做侍襲論解答、列式、求值。
3.教師巡視並居於適應的指導,特別在第二道題時純兄進行指導。抽取其中2-3個小組的代表進行匯報。然後教師總結。
4.然後將書上的例題進行講解,並結合例題與之前的兩題,強調注意如何分辨高和底、統一單位、答題的書寫格式(答寫完全)。
5.然後進行練習,兩到三題為准,難度可以一次增加。難度簡單的,同桌之間進行評價,然後教師公布答案。難度大的或者有不同解法的,可以讓學生簡要講解。
3. 上三年級的孩子數學應用題不大會,我應該怎樣輔導
你好!
先教孩子解決問題各種應用題的思路,然後讓他自己一步步地做,在出錯時給予糾正,而且要多做,熟練了就好了。
僅代表個人觀點,不喜勿噴,謝謝。
4. 三年級學習應用問題學了嗎
三年級學習應用問題學了。
小學三年級應衫沖用題是整數應用題的總結,也是小數應用題的開始。在這一階段把整數應用題中的一般應用題和典型應用題作了一個全面的匯總是很有必要的。
所以小學三應用題的教學是一個非常重要的階段,涉及一般應用題到典型應用題,從一步應用題到幾步應用題,這就要求同學掌握從普遍到特殊,從簡單到復雜的解答方法,從已學習到的解題方法中找出規律,把握特點。下面是一些小學三年級數學應用題解題技巧,希望可以給大家帶來幫助,提高三年級數學成績。
做題方式
1、讀題,即把握題意,准確理解題目的設置的方向以及考察的內容。
2、說題,說題就是要理清題目中給出的已知條件以及所要求解決的問題。在這一過程中,應當將題目中的關鍵詞進去圈注。如表示數量的「一共」、"幾倍」、「平均值"等,此外也應當特別注意單位的統一。
3、析題。就是要將題目中的數量關系進行分析,這也是正確解答數學應用題的關鍵所在,搏源這或銀殲一步驟中對學生的邏輯思維能力的要求特別高。
5. 小學三年級數學應用題的解題要領
小學數學應用題類型及解題方法
一和差問題:已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數 (和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2 =28÷2 =14 乙數(24-4)÷2 =20÷2 =10 甲數
答:甲數是10,乙數是14
二差倍問題:已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(噸) 第一堆煤的重量 10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
三還原問題:已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2 =[31×2-12]×2 =[62-12]×2 =50×2 =100(噸)答:這個倉庫原來有大米100噸。
四置換問題:題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10) =120÷10 =12(張)→10分一張的張數
100-12=88(張)→20分一張的張數或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
五盈虧問題(盈不足問題):題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時: 總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時: 總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5) =18÷2 = 9(人)
5×9+14 =45+14 =59(棵) 或:7×9-4 =63-4 =59(棵)
答:這個班有9人,一共有樹苗59棵。
六年齡問題:年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1) =42÷3 =14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後 答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)=42÷6=7(歲)兒子幾年前年齡12-7=5(年)5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)=300÷4 =75(歲)→父親的年齡
148-75=73(歲)或:(148+2)÷2 =150÷2 =75(歲) 75-2=73(歲)
答:王剛的父親今年75歲,母親今年73歲。
七雞兔問題:已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
(64-2×24)÷(4-2) =(64-48)÷(4-2)=16 ÷2 =8(只)→兔的只數 24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻。
八牛吃草問題(船漏水問題):若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5 =5(頭)→可供5頭牛吃一天。
150-10×5 =150-50 =100(頭)草地上原有草供100頭牛吃一天
100÷(10-5) =100÷5 =20(天)答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)=(400-300)÷(100-50)=100÷50 =2
400-100×2 =400-200=200 200÷(7-2)=200÷5 =40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
九公約數、公倍數問題:運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米 1.75=175厘米0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25CM
(250÷25)×(175÷25)×(75÷25) =10×7×3 =210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。 120÷24=5(周) 120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
十分數應用題:指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
例2:一堆煤有180噸,運走了3/5 。運走了多少噸?
例3:某農機廠去年生產農機1800台,今年計劃比去年增加1/3 。今年計劃生產多少台?1800×(1+1/3 )=1800×4/3=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的1/3 ,第二天修完餘下的1/4 。還剩下多少米?
2400×(1-1/3 )×(1-1/4 )=2400×2/3 ×3/4=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的4/7 。全校有學生多少人?
例6:甲庫存糧120噸,比乙庫的存糧少1/3 。乙庫存糧多少噸?
120÷(1-1/3) =120×3/2 =180(噸)答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的1/2 ,第二次運走全部的1/3 ,第二次比第一次少運8噸。這堆煤原有多少噸?8÷( 1/2-1/3 )= 8÷1/6 =48(噸)
答:這堆煤原有48噸。
十一工程問題:它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:工作效率×工作時間=工作量
工作量÷工作時間=工作效率
工作量÷工作效率=工作時間?
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
百分數應用題:這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
6. 怎麼教小學三年級的孩子解應用題
當初我的應用題也做的很差 後來我爸爸每天都把一個應用題分好幾種方法解答給我聽 有的時候一道應用題就說半個小時甚至更久 我都好煩他的 但是過了1個多月後 那些應用題我卻發現很簡單了 所以呢 你要耐心的講解 分析給孩子挺 這樣呢 孩子就會掌握技巧 自然就會覺得容易了