⑴ 初中數學找規律的題怎麼做
基本思路是:
1、求出數列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的總增幅;
3、數列的第1位數加上總增幅即是第n位數。
一般情況下,找規律的題目第一二問都是比較簡單的,如果實在找不到規律,也要把自己思考的思路寫下去,能拿一分是一分。
⑵ 數學規律題怎樣找規律
數學規律題找規律方法如下:
基本方法——看增幅
1、如增幅相等(實為等差數列):對每個數和它的前一個數進行比較,如增幅相等,則第n個數可以表示為:an(n—l)b,其中a為數列的第一位數,b為增幅,(n—1)b為第一位數到第n位的總增幅。然後再簡化代數式a(n—1)b。
4、增幅不相等,但是增幅同比增加,即增幅為等比數列。
如:2、3、5、9、17、….
分析:數列2、3、5、9、17…。的增幅為1、2、4、8….即增幅為等比數列,比為:2。
⑶ 初中數學找規律題的技巧有哪些
很多同學都做過找規律的題,我整理了一些做題技巧,大家一起來看看吧。
找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
如增幅相等(實為等差數列):對每個數和它的前一個數進行比較,如增幅相等,則第n個數可以表示為:a1+(n-1)b,其中a1為數列的第一位數,b為增幅,(n-1)b為第一位數到第n位的總增幅。然後再簡化代數式a1+(n-1)b。
如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二級等差數列)。如增幅分別為3、5、7、9,說明增幅以同等幅度增加。此種數列第n位的數也有一種通用求法。
從具體實際的問題出發,觀察各個數量的特點及相互之間的變化規律;由此及彼,合理聯想,大膽猜想;善於類比,從不同事物中發現相似或相同點;總結規律,得出結論,並驗證結論正確與否;善於變化思維方式,做到事半功倍,探索規律是一種思維活動及思維從特殊到一半的跳躍,需要有一定的歸納與綜合能力,當已知的數據有很多組時,需要仔細觀察,反復比較才能准確找出規律。
以上就是一些找規律題的解題技巧的相關信息,供大家參考。
⑷ 小學數學怎樣找規律
規律:符號是 ++-++-++-…………
大小 1^2 2^2 3^2 …………6^2 7^2………鋒橋…
下一項是 +7^2=49
找規律的方法:
1、標出序列號:找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
2、斐波那契數列法:每個數都是前兩個數的和。
3、等差數列法:每兩個數之間的差都相等。
4、跳格子法蠢拍:可以間隔著看,看隔著的數之間有什麼關系,如14,1,12,3,10,5,第帶基羨奇數項成等差數列,第偶數項也成等差數列,於是接下來應該填8。
⑸ 數學規律題中如何找規律
一、代數中的規律「有比較才有鑒別」。通過比較,可以發現事物的相同點和不同點,更容易找到事物的變化規律。
找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。揭示的規律,常常包含著事物的序列號。所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
例1 觀察下列各式數:0,3,8,15,24,……。試按此規律寫出的第100個數是___。」
分析:解答這一題,可以先找一般規律,然後使用這個規律,計算出第100個數。 我們把有關的量放在一起加以比較:
給出的數:0,3,8,15,24,……。
序列號: 1,2,3, 4, 5,……。 容易發現,已知數的每一項,都等於它的序列號的平方減1。因此,第n 項是n-1,第100項是100-1。
如果題目比較復雜,或者包含的變數比較多。解題的時候,不但考慮已知數的序列號,還要考慮其他因素。
例2 (1)觀察下列運算並填空1×2×3×4+1=24+1=25=52×3×4×5+1=120+1=121=1123×4×5×6+1=360+1=1924×5×6×7+1= +1= = 27×8×9×10+1= +1= = 2(2)根據(1)猜想(n+1)(n+2)(n+3)(n+4)+1=( )2並用你所學的知識說明你的猜想。分析:第(1)題是具體數據的計算,第(2)題在計算的基礎上仔細觀察。已知四個數乘積加上1的和與結果中完全平方數的數的關系是猜想的正確性的解釋,只要用完全平方數四個數的首尾兩數乘積與1的和正好是完全平方數的底數,由此探索其存在的規律,解決猜想公式逆用就可解決解:(1)4×5×6×7+1=840+1=841=292 7×8×9×10+1=5040+1=5041=712(2)(n+1)(n+2)(n+3)(n+4)+1 =[(n+1)(n+4)+1]2 =(n2+5n+1)2 二、 平面圖形中的規律
圖形變化也是經常出現的。作這種數學規律的題目,都會涉及到一個或者幾個變化的量。所謂找規律,多數情況下,是指變數的變化規律。所以,抓住了變數,就等於抓住了解決問題的關鍵。
⑹ 小學找規律題的技巧
下面是找規律題常見的4種解題方法。
一、標序號
我們把已知的數和對應的序列號放在一起觀察、比較,常見的有等差數列。
二、公因式法
把給出的數分成最小公因式相乘,觀察是否與n,或2n、3n有關。
三、第一位數法
所給的數同時減去、加上,或乘以,或除以第一位數,成為新數列,再找出與序列號的關系,可發現規律。
四、奇位、偶位數字分開
把奇數位置與偶數位置的數分別列出來,成為兩個數列,再找出規律。
找規律填數是小學數學常考的題型,主要考察學生的觀察能力、思維能力和運算能力。
要想解答這類問題,一定要學會觀察、發現問題的特點和變化規律。
怎麼才能把數學學好呢?第一步、先讓孩子復習理解所有小學學過的數學知識點,公式,定 律 ,把這些重要的知識點梳理出來,歸納匯總在一起, 然後逐漸的理解吃透這些公式知識點:
第二步、把整個小學階段的數學運用題分類整理以後遇到同樣的題型孩子就會做了, 實際上整個小學數學的應用題,奧數題只有32種, 只要把這32種應用題奧數題全部弄懂吃透,孩子的數學肯定優秀。
⑺ 數學找規律題有什麼技巧
你可以先把題給你的已知條件先寫下來(豎著寫),思路清晰,
再在序號後面依次寫上已知的前面幾個條件.
如: 找規律 8 17 25 33……
(序號)1 (已知條件)8
2 17=8×2+1
3 25=8×3+1
4 33=8×4+1
...
... (發現規律了,8×序號+1)
n 8×n+1
反正以後你把規律都豎著寫,
切記序號一定得寫.
希望我的方法對你有用,謝謝
⑻ 初中數學找規律的題怎麼做````具體方法!~~
一、基本方法——看增幅
(一)如增幅相等(此實為等差數列):對每個數和它的前一個數進行比較,如增幅相等,則第n個數可以表示為:a+(n-1)b,其中a為數列的第一位數,b為增幅,(n-1)b為第一位數到第n位的總增幅。然後再簡化代數式a+(n-1)b。
例:4、10、16、22、28……,求第n位數。
分析:第二位數起,每位數都比前一位數增加6,增幅相都是6,所以,第n位數是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅為等差數列)。如增幅分別為3、5、7、9,說明增幅以同等幅度增加。此種數列第n位的數也有一種通用求法。
基本思路是:1、求出數列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的總增幅;
3、數列的第1位數加上總增幅即是第n位數。
舉例說明:2、5、10、17……,求第n位數。
分析:數列的增幅分別為:3、5、7,增幅以同等幅度增加。那麼,數列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,總增幅為:
〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位數是:2+n2-1=n2+1
此解法雖然較煩,但是此類題的通用解法,當然此題也可用其它技巧,或用分析觀察湊的方法求出,方法就簡單的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅為等比數列,如:2、3、5、9,17增幅為1、2、4、8.
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此類題大概沒有通用解法,只用分析觀察的方法,但是,此類題包括第二類的題,如用分析觀察法,也有一些技巧。
二、基本技巧
(一)標出序列號:找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
例如,觀察下列各式數:0,3,8,15,24,……。試按此規律寫出的第100個數是。
解答這一題,可以先找一般規律,然後使用這個規律,計算出第100個數。我們把有關的量放在一起加以比較:
給出的數:0,3,8,15,24,……。
序列號:1,2,3,4,5,……。
容易發現,已知數的每一項,都等於它的序列號的平方減1。因此,第n項是n2-1,第100項是1002-1。
(二)公因式法:每位數分成最小公因式相乘,然後再找規律,看是不是與n2、n3,或2n、3n,或2n、3n有關。
例如:1,9,25,49,(),(),的第n為(2n-1)2(三)看例題:
A:2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案與3有關且............即:n3+1
B:2、4、8、16.......增幅是2、4、8.......答案與2的乘方有關即:2n
(四)有的可對每位數同時減去第一位數,成為第二位開始的新數列,然後用(一)、(二)、(三)技巧找出每位數與位置的關系。再在找出的規律上加上第一位數,恢復到原來。
例:2、5、10、17、26……,同時減去2後得到新數列:
0、3、8、15、24……,
序列號:1、2、3、4、5
分析觀察可得,新數列的第n項為:n2-1,所以題中數列的第n項為:(n2-1)+2=n2+1
(五)有的可對每位數同時加上,或乘以,或除以第一位數,成為新數列,然後,在再找出規律,並恢復到原來。
例:4,16,36,64,?,144,196,…?(第一百個數)
同除以4後可得新數列:1、4、9、16…,很顯然是位置數的平方。
(六)同技巧(四)、(五)一樣,有的可對每位數同加、或減、或乘、或除同一數(一般為1、2、3)。當然,同時加、或減的可能性大一些,同時乘、或除的不太常見。
(七)觀察一下,能否把一個數列的奇數位置與偶數位置分開成為兩個數列,再分別找規律。
三、基本步驟
1、先看增幅是否相等,如相等,用基本方法(一)解題。
2、如不相等,綜合運用技巧(一)、(二)、(三)找規律
3、如不行,就運用技巧(四)、(五)、(六),變換成新數列,然後運用技巧(一)、(二)、(三)找出新數列的規律
4、最後,如增幅以同等幅度增加,則用用基本方法(二)解題
參考:
http://wenku..com/view/4d0dcdd284254b35eefd3403.html
⑼ 初一數學找規律經典題技巧解析是什麼
數字找規律類型總結:
在實際解題過程中,根據相鄰數之間的關系分為兩大類:
(1)相鄰數之間通過加、減、乘、除、平方、開方等方式發生聯系,產生規律,主要有以下幾種規律:相鄰兩個數加、減、乘、除等於第三數;相鄰兩個數加、減、乘、除後再加或者減一個常數等於第三數;前一個數的平方等於第二個數;前一個數的平方再加或者減一個常數等於第二個數;前一個數乘一個倍數加減一個常數等於第二個數。
(2)數據中每一個數字本身構成特點形成各個數字之間的規律
數據中每一個數字都是n 的平方構成或者是n 的平方加減一個常數構成,或者是n的平方加減n構成;每一個數字都是n的立方構成或者是n的立方加減一個常數構成,或者是n的立方加減n;數據中每一個數字都是n的倍數加減一個常數;以上是數字推理的一些基本規律,必須掌握。但掌握這些規律後,這就需要在對各種題型認真練習的基礎上,應逐步形成自己的一套解題思路和技巧。
規律型--數字的變化類解題基本技巧:
(1)標出序列號:找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
(2)公因式法:每位數分成最小公因式相乘,然後再找規律,看是不是與n2、n3,或2n、3n,或2n、3n有關。
(3)有的可對每位數同時減去第一位數,成為第二位開始的新數列,然後用(1)、(2)、技巧找出每位數與位置的關系.再在找出的規律上加上第一位數,恢復到原來。
(4)有的可對每位數同時加上,或乘以,或除以第一位數,成為新數列,然後,在再找出規律,並恢復到原來。
(5)同技巧(3)、(4)一樣,有的可對每位數同加、或減、或乘、或除同一數(一般為1、2、3)。當然,同時加、或減的可能性大一些,同時乘、或除的不太常見。
(6)觀察一下,能否把一個數列的奇數位置與偶數位置分開成為兩個數列,再分別找規律。
⑽ 數學找規律題技巧是什麼
數學找規律題技巧是:
1、先觀察。做找規律題,拿到題目後,先不要著急做題,首先應該先去觀察。主要是觀察題目和題型,通過觀察,揣摩下出題者的用意,有些簡單的題,通過觀察就可以得到想要的答案的。所以拿到題目時,先以觀察為主,觀察題目,觀察數字,觀察圖畫。
2、列條件。做找規律題,在觀察完題目後,假如還是沒有找到准確的答案,那就建議你要去學會列條件了。把題目已知的條件列出來,變著方式和方法去列,通過動手動筆,說不定你就能找到你想要的答案的。
3、去比較。做找規律題,要學會去比較。比較就是比較題目的差異。特別是圖畫型找規律題,多花點心思去比較圖畫的異同點,從中找到對應的答案,比一比,說不定就把答案比出來了。
4、大膽猜。做找規律題,要敢於大膽猜。有些題目,你看了半天也沒有找到解題的思路或者是方法,也沒有發現具體的規律,這個時候,建議你嘗試去猜規律,猜了後再來一題一題的試,能夠把題目試出來最好,假如試不出來,又再去猜一種規律,又再來試。
5、用公式。做找規律題,要善於用公式。特別是在做一些數列題或者數字題的時候,有可能你觀察半天都找不到規律,但是你去用相關的數學公式一套,多半就把規律套出來了。所以去記住一些數學公式也很重要。
6、巧假設。做找規律題,要敢於去假設。有些題,要想找到規律,在必要的時候要學會去假設,假設條件,假設規律,假設結果,通過假設,說不定你就能找到題目的規律了。