㈠ 如何讓學生理解抽象的數學知識
如何進行數學概念的教學數學是思維的科學,概念是思維的細胞,教好概念是教好數學的內在要求。概念教學搞不好,數學課程目標的實現就失去了根基。李邦河院士指出,「數學根本上是玩概念的,不是玩技巧.技巧不足道也!」因此,我們必須重視數學概念的教學。然而,當前不重視概念教學是一個比較普遍的現象。「一個定義,三項注意」式的抽象講解,在學生對概念還沒有基本理解的時候就要求學生進行概念的綜合應用,許多教師甚至認為教概念不如多講幾道題目更「實惠」。更令人擔心的是,有些教師不知如何教概念。這一問題必須引起我們的充分重視。從教育與發展心理學的觀點出發,概念教學的核心就是「概括」:將凝結在數學概念中的數學家的思維活動打開,以若干典型具體事例為載體,引導學生分析各事例的屬性、抽象概括共同本質屬性、歸納得出數學概念等思維活動而獲得概念。數學教學要「講背景,講思想,講應用」,概念教學則要強調讓學生經歷概念的概括過程。由於「數學能力就是以數學概括為基礎的能力」,重視數學概念的概括過程對發展學生的數學能力具有重要的意義。一般而言,概念教學應經歷以下7個基本環節:(1)背景引入;(2)通過典型、豐富的具體例證(必要時要讓學生自己舉例),引導學生開展分析、比較、綜合的活動;(3)概括共同本質特徵得到概念的本質屬性;(4)下定義(用准確的數學語言表達,可以通過看教科書完成);(5)概念的辨析,即以實例(正例、反例)為載體,引導學生分析關鍵詞的含義,包括對概念特例的考察;(6)用概念作判斷的具體事例,這里要用有代表性的簡單例子,其目的是形成用概念作判斷的具體步驟;(7)概念的「精緻」,主要是建立與相關概念的聯系,形成功能良好的數學認知結構。概念教學要盡量採用歸納式,給學生提供概括的機會。比如:「軸對稱」概念的教學。本課安排在蘇科版教材八年級上冊。根據《數學課程標准》的要求,主要任務是通過具體實例認識軸對稱。由於沒有「對應點」概念,還不能以「對應點連線段的垂直平分線」定義對稱軸,學生只能憑觀察、操作找出對稱軸,因此本課的「數學味」較淡。如何才能將這樣的內容上出「數學味」?關鍵是要注意在學生現有認知水平基礎上提供概括機會,讓學生經歷從具體實例中歸納共同特徵,並讓學生從概念出發解釋自己操作的合理性。主要過程如下:第1步,列舉生活中的對稱實例,抽象出軸對稱圖形,說明通過「沿某條直線對折」可使直線兩旁的部分相互重合,這里要注意例子的典型性、豐富性;第2步,以問題「你能舉出與老師所舉例子具有相同結構的生活實例嗎」,引導學生舉出具有軸對稱形象的實例;第3步,概括所舉例子的共同特徵——存在一條直線l,沿l對折,兩邊的圖形能夠重合;第4步,下定義;第5步,辨析概念的關鍵詞,即以正例、反例為載體,用變式推動概念的理解,如讓學生舉出常見的軸對稱圖形的例子並指出對稱軸,討論對稱軸可能有多少條等;第6步,讓學生製作一個軸對稱圖形,並要求學生說出每一步驟的目的和依據,特別要問學生「為什麼要先折疊」,讓學生知道摺痕就是對稱軸。這樣,圍繞軸對稱概念的核心——對稱軸,給學生的觀察、操作、用概念說理等機會,使學生形成「軸對稱圖形」和「對稱軸」的直觀感受,為後續探索軸對稱圖形的性質提供基礎。當然,這樣的內容不必用太多的課時,實際上,學生完全有能力更快地進入軸對稱圖形性質的討論。
㈡ 數學教學中怎樣把抽象的知識具體化
數學源於生活,生活中又充滿著數學。學生的數學知識與才能,不僅來自於課堂,還來自於現實生活實際。在課堂教學中,把數學和學生的生活實際銜接起來,讓數學貼近生活,使學生感到生活中處處有數學,學起來自然、親切、真實。實現「人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展」。 如何把握數學與生活的銜接,提高教學效果,我在教學中注意從以下幾方面入手。
一、 數學語言生活化,理解數學
前蘇聯數學教育家斯托利亞爾曾說過:數學教學也就是數學語言的教學。在課堂教學的師生交往中,主要是通過言語交流。同一堂課,不同的教師教出來的學生接受程度不一樣,主要還是取決於教師的語言素質如何,尤其是在我們數學課堂教學中,要將抽象化的數學使學生形象地接受、理解。一個沒有高素質語言藝術的教師是不能勝任的。看似枯燥無味的數學,實則裡面蘊藏著生動有趣的東西。鑒於此,教師的數學語言生活化是學生引導理解數學、學習數學的重要手段。教師要結合兒童的認知特點、興趣愛好、心理特徵等個性心理傾向,在不影響知識的前提下,對數學語言進行加工、裝飾,使其通俗易懂、富有情趣。
如認識「 <」、「>」,教師可引導學生學習順口溜:大於號、小於號,兩個兄弟一起到,尖角在前是小於,開口在前是大於,兩個數字中間站,誰大對誰開口笑。區別這兩個符號對學生來說有一定的難度,這個富有童趣的順口溜可以幫助學生有效的區分。
又如把教學長度單位改成「長長短短」;把教學元、角、分改成「小小售貨員」,把比大小說成「排排隊」等等,學生對這些生活味十足的課題知識感到非常好奇,感到學習數學很有趣。
二、數學問題生活化,感受數學
新的課程標准更多地強調學生用數學的眼光從生活中捕捉數學問題,探索數學規律,主動地運用數學知識分析生活現象,自主地解決生活中的實際問題。在教學中我們要善於從學生的生活中抽象數學問題,從學生的已有生活經驗出發,設計學生感興趣的生活素材以豐富多彩的形式展現給學生,使學生感受到數學與生活的聯系--數學無處不在,生活處處有數學。因此,通過學生所了解、熟悉的社會實際問題(如環境問題、治理垃圾問題、旅遊問題等等),為學生創設生動活潑的探究知識的情境,從而充分調動學生學習數學知識的積極性,激發學生的探索慾望。
比如:生活中每時每刻都要用到估算,要求學生估算一下每天上學到校需多少時間,以免遲到;或估算一下外出旅遊要帶多少錢,才夠回來等等。在教學中引導學生尋找生活中的數學問題,既可積累數學知識,讓學生通過如此切身的問題感受到學數學的價值所在,更是培養學生探索意識和應用意識的最佳途徑。
三、數學情境生活化,體驗數學
教育心理學的研究表明:學生在沒有精神壓力,沒有心理負擔,心情舒暢,情緒飽滿的情境下,大腦皮層容易形成興奮中心,思維最活躍,實踐能力最強。在日常的教學中,應該提供這樣的思維環境,創設與學生生活環境、知識背景密切相關的、又是學生感興趣的學習情境,使學生感覺到在課堂上學習就像在日常生活中遇到了數學問題一樣,需要大家一起來實踐解決,通過自己的動手操作,集體的共同研究,最終得出學習結論。
如在空間與圖形的教學中,要充分利用學生生活中的事物,引導學生探索圖形的特徵,豐富空間與圖形的經驗,建立初步的空間觀念。教學中可以組織學生分小組到操場上選定一個建築物,讓學生站在不同角度看這個建築物,體會從不同的角度看同一個物體時,所看到的形狀的變化,並用簡單的圖形畫下來。也可讓學生在方格紙畫出示意圖:假設圖書館在學校的正東方向200米處,小紅家在學校正北方向500米處,醫院在學校的正南方向1000米處,車站在學校的正西方向800米處。學生可以根據這些信息,在方格紙上確定適當的單位距離,標出相對位置後,教師再及時組織引導學生進行交流,逐步發展學生的空間觀念。
又如教學「元角分的認識」,組織學生開展一次「我是一位出色的售貨員」活動,讓他們在逼真的買賣中掌握、消化和應用知識。再如,相遇問題應用題教學,教師採用學生登台表演,情景再現的方法,把抽象的相關的各種數學術語讓學生迅速地理解,既活躍了課堂氣氛,又高效率地完成了教學任務。
四、數學作業生活化,運用數學
數學來源於生活而最終服務於生活。尤其是小學數學知識 ,在生活中都能找到其原型。把所學的知識應用到生活中,是學習數學的最終目的。由於課堂時間短暫,所以作業成了課堂教學的有益延伸,成了創新的廣闊天地。學生適當運用課堂內容的自然延伸,能從廣闊的大千世界中學習知識。教師在教學中應努力激發學生運用知識解決問題的慾望,引導學生自覺地應用知識解決生活中相關的問題。
如學習了長度單位,可以測自己和父母的身高,從家到學校的路程;認識了人民幣可以用自己零用錢買所需要的東西;學習了統計知識和百分比應用題,可以去統計本校學生人數以及
㈢ 如何教小孩子理解抽象的數學問題
很多人小時候都會被數學題難到,在如今教育過程當中,很多家長也想方設法的讓孩子理解抽象的數學問題。但是這一問題並不是那麼好解決的,大部分家長也沒有找對方法讓孩子正確的了解數學相關問題,從而很多孩子在父母的棍棒教育之下失去對數學問題的好奇,也讓他們不再喜歡數學這一學科。其實數學這一學科真正入門之後,有很多孩子都非常喜歡探究探索其中數學問題,這一對於他們的思維能力是個很好的鍛煉。
㈣ 如何培養學生的數學抽象能力
培養學生的數學抽象能力
1、讓學生經歷應用數學的過程,體會數學的應用價值 從學生所熟悉的現實生活出發,把具體的實際問題抽象成數學問題,再把它應用到新的現實問題情境中,讓學生經歷數學的應用過程,加深對數學知識的理解,是提高學生應用能力的重要方法。
例如,北師大版七年級上冊中「用正方形的紙折一個無蓋的長方體,使其體積最大」這一問題,教學時先從學生熟悉的折紙活動開始,通過操作、分析和交流,形成問題的代數表達;再通過收集有關數據,以及對不同數據的歸納,猜測「體積變化與邊長變化之間的關系」;然後通過交流驗證等活動,得到問題的答案,最後對求解的過程進行反思。在這一過程中學生體會到各方面知識的聯系,經歷了發現問題,從數學角度分析問題,並探索解決問題的過程,使學生體驗了數學知識的應用價值。在此過程中要切忌由教師全盤端出,同時還應引導學生結合所學知識探索更多類似可以應用的實際問題和相關背景,使學生綜合應用知識的能力得到提高。
2、引導學生從數學角度認識理解事物,培養提出問題的能力 為了提高學生解決問題的能力,首先應從數學角度對現實世界進行描述,找到其中與數學有關的因素,探索其中的規律,進一步從數學的角度提出問題、發現問題並尋求解決問題的辦法。
又如學習了一次函數後,可以鼓勵學生從數學的角度提出一些與計程車有關的問題進行探討,諸如,車費與行駛路程、等候時間、起步價有關;耗油量與行駛路程有關等等,提出自己不同的見解,最後共同解決問題。這樣就可以拓展學生的思維,在更深的層次上認識所學的內容。
3、通過搜集數學應用的事例,加深對數學應用的理解和體會
在教學過程中,教師可以自己搜集有關資料介紹給學生,也可鼓勵學生自己通過多種渠道搜集數學知識應用的具體案例,並互相交流。例如:七年級數學上冊中在學習「截一個幾何體」時,給學生介紹醫學診斷上的一個重要儀器「CT」,它應用的就是一種與「截幾何體」類似的儀器和方法。在學習了統計中的眾數、中數、平均數、頻率等概念之後,教師可有計劃地安排學生調查、收集本市去年的氣溫變化數據,這就需要學生自行分工收集資料,對去年每月的氣溫數據進行整理、分析,繪制出折線統計圖和頻率分布表,並對統計圖表中的數據進行分析表述,最後進行匯報交流。
㈤ 小學數學教學中如何處理好直觀教學和抽象思維的關系
在小學數學這門學科的基礎知識中,其概念、運算性質、運算定律和計演算法則、公式等都是抽象的結果。直觀教學作為一種教學手段,它必須依賴於一定的中介物向學生傳遞知識信息。由於師生之間傳遞教學信息的主要媒體不同,直觀教學的形式也就不同,其數學思維方法也不相同,但得出的結論或抽象的結果應完全相同。數學教師在教學中一般都比較重視直觀教學上升為數學抽象思維,來逐步培養與提高小學生的概括能力,逐步培養和發展他們的邏輯思維能力。
一、把握直觀教學與思維發展的方向 1、實物直觀與抽象思維
實物直觀具有鮮明、生動和真實等特點,容易引起學生的學習興趣,增強感知的積極性。所以它在小學數學教學中具有廣泛的適用性,特別是對數的概念的建立,四則運算意義的理解,時間單位和幾何形體特徵的認識,以及周長、面積、體積的計算等內容的教學,通常是直接利用實物直觀來幫助學生建立知識表象的。如學生通過觀察黑板、桌面、書面等表面是長方形的實物面形成長方形的表象,得到長方形的概念。通過對粉筆盒、磚塊、包裝盒等實物的觀察、分析,使學生初步認識長方體和正方體,進而掌握它們的特徵……不過實物直觀也有其明顯的局限性,那就是在某些實物中數學概念的本質屬性常常容易被非本質屬性所掩蓋,學生不易感知對象的本質特徵。如學生通過對人民幣的觀察,可以獲得元、角、分這幾種人民幣的表象,但卻容易停留在對人民幣畫面的認知上而不能很好地知道它們之間的關系。所以,在實施實物直觀教學時,運用數學抽象思想方法,採用提示、重點引導等方式突出對象的本質屬性,以提高其教學效率。
2、模具直觀與抽象思維
模具直觀的主要特點是能夠突出觀察對象的主要部分,更好地反映數學概念的關鍵特徵和數學原理的普遍規律,特別是通過學生的實際操作更有利於發展學生的思維能力。如在認識「三角形的穩定性」時,教師採取先讓學生觀察四邊形的教具,發現四邊形的不穩定性。然後去掉其中一根棒,得到三角形的教具,再讓學生拉、壓,感受到三角形沒有變化,從而使學生真正認識到三角形的穩定性,不僅獲得了良好的教學效果;而且調動了他們的學習主動性和積極性,培養了他們的動手能力和思維能力。
3、圖像直觀與抽象思維
在應用題的教學中,常常可以將題目中的條件和問題用線段圖表示出來,使量與量之間的關系清晰明了,便於學生理解。如教學四則混合運算和應用題:「小紅家買來一袋大米,吃了5/8,還剩15千克,買來大米多少千克」學生只從文字上不易明白15千克與5/8的關系,而用圖表示就容易理解15千克與5/8的各自對應關系,列式解答也就容易了。在當前的教學實踐中,圖像直觀採用以投影儀、錄像機、計算機為主的電化方式,變靜態為動態,效果更好。電化教學不受時間和空間限制,可以在大和小、遠和近、快和慢、動和靜、整體與部分等方面相互轉化,清晰地顯示出被觀察對象各個部分以及它們之間的聯系,幫助學生觀察事物的發展變化過程,十分有利於學生理解數學概念和有關規律。這對優化課堂教學,提高教學質量,以及增強學生的學習興趣、調動其積極性、促使其對數學知識的理解和掌握,都具有重要作用。例如:教學「草地上有8隻羊,又來了3隻,一共有多少只羊」時,教師用計算機出示「草地上有8隻羊」的畫面,然後又動態顯示「又來了3隻羊」。於是很自然地把生活中的實際問題轉化為數學問題,並使學生在良好的情境中,集中了注意力,激發了學習興趣,達到了寓教於樂的效果,從而使學生很輕松地掌握了應用題的結構。
除了上面三種主要直觀手段外,語言直觀也是十分重要的。教學中,教師使用生動形象富有感染力的語言並藉助表情、手勢等動作對所學內容作形象化的描述,可以強化觀察、分析的關鍵部分,使學生克服在認知上的困難,幫助他們在大腦中形成有關事物的表象,獲得相應的感性認識,進而使感性認識形成理性認識。所以,在教學中,教師的語言對啟發學生的思維起著關鍵性地作用。但是語言直觀一般很難孤立地運用,往往是融於其他直觀手段之中,相互結合,才能產生良好的教學效果。
總之,概念的建立可通過「實物→表象→概念→形式化」的思維途徑來解決;計演算法則、公式(包括運算性質、定律)的導出可通過「形的合並抽象為算式→概括為用數學語言表述的法則→法則符號化」的思維途徑來解決。
二、充分發揮表象在數學抽象概括中的橋梁作用
表象是指在感覺之後在腦中留下的反映的痕跡。表象和感知都是具體的、直觀的反映。表象接近概念,具有一定的抽象性。但又沒有抽象概念那樣反映事物的本質屬性。所以,在概念形成、法則推導的過程中,設法建立一個能突出事物共性的典型表象是形成概念,推導出法則、公式等的關鍵。所以,要充分發揮表象在數學抽象概括中的作用。比如,三角形的概念就是在學生已有三角形的初步認識和三角形的表象的基礎上進行抽象概括得出的。
三、運用直觀教學上升為數學抽象思想,培養小學生概括能力時,應特別注意如下幾個具體問題: 1、抽象概括要及時。
我們都知道,小學生是以形象思維為主的,因此,在數學概念的建立、法則公式的推導、解答應用題時,要讓學生感知充分,在感知的基礎上,要特別注意及時進行抽象概括。否則,學生的思維只停留在膚淺的、表面的、支離破碎的現象上,對事物的主要因素認識不深,不能揭示出事物的本質,不能達到讓學生從感性認識上升到理性認識的高度。
2、數學的抽象概括要逐步深入,分層次進行,不可操之過急。 對小學生抽象概括能力的培養,一般應遵循從抽取事物形象的外部特徵向抽象事物本質特徵逐步發展提高。比如,「加法交換律」這一概念的建立,開始時可從具體事物進行抽象:1個氣球加2個氣球等於2個氣球加1個氣球,由此得出1+2=2+1,從而導出交換加數的位置和不變的結論,再抽象為字母表示加法交換律a+b=b+a 教學實踐使我們深刻地認識到,小學數學教材中的各種數學知識都是採取逐步滲透的辦法,由具體到半具體半抽象,再到抽象,逐步發展的。這樣,易為小學生所接受並收到良好的效果。
㈥ 如何在小學數學解題中運用抽象思維法
在小學數學解題方法中,運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。
抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。
小學數學要培養學生初步的抽象思維能力,重點突出在:
(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。
(2)思維方法上,應該學會有條有理,有根有據地思考。
(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。
(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理。
1、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
例1:三個連續自然數的和是18,則這三個自然數從小到大分別是多少?
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
例2:判斷題:能被2除盡的數一定是偶數。
這里要對照「除盡」和「偶數」這兩個數學概念。只有這兩個概念全理解了,才能做出正確判斷。
2、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
例3:計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運用乘法分配律
=59×50…………運用加法計演算法則
=(60-1)×50…………運用數的組成規則
=60×50-1×50…………運用乘法分配律
=3000-50…………運用乘法計演算法則
=2950…………運用減法計演算法則
3、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯系與區別,這是比較的實質。