① 數學集合符號都有哪些
數學集合符號如下:
1、N:非負整數集合或自然數集合{0,1,2,3,…}
2、N*或N+:正整數集合{1,2,3,…}
3、Z:整數集合{…,-1,0,1,…}
4、Q:有理數集合
5、Q+:正有理數集合
6、Q-:負有理數集合
7、R:實數集合(包括有理數和無理數)
8、R+:正實數集合
9、R-:負實數集合
10、C:復數集合
11、∅ :空集(不含有任何元素的集合)
集合基礎知識:
1、定義:一般地,我們把研究對象統稱為元素,一些元素組成的總體叫集合,也簡稱集;
2、表示方法:集合通常用大括弧{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。
3、關於集合的元素的特徵
(1)確定性:給定一個集合,那麼任何一個元素在或不在這個集合中就確定了;
(2)互異性:一個集合中的元素是互不相同的,即集合中的元素是不重復出現的;
(3)無序性:即集合中的元素無順序,可以任意排列、調換。
4、元素與集合的關系:(元素與集合的關系有「屬於」及「不屬於」兩種)
(1)若a是集合A中的元素,則稱a屬於集合A;
(2)若a不是集合A的元素,則稱a不屬於集合A。
5、集合的表示方法
(1)列舉法:把集合中的元素一一列舉出來, 並用花括弧括起來表示集合的方法叫列舉法;
(2)描述法:用集合所含元素的共同特徵表示集合的方法,稱為描述法;
(3)文氏(Venn)圖法:畫一條封閉的曲線,用它的內部來表示一個集合。
② 集合與元素的數學符號
數學集合符號如下:
1、N:非負整數集合或自然數集合{0,1,2,3,…}。
2、N*或N+:正整數集合{1,2,3,…}。
3、Z:整數集合{…,-1,0,1,…}。
4、Q:有理數集合。
5、Q+:正有理數集合。
6、Q-:負有理數集合。
7、R:實數集合(包括有理數和無理數)。
8、R+:正實數集合。
9、R-:負實數集合。
10、C:復數集合。
11、∅ :空集(不含有任何元素的集合)。
(2)數學中集合元素用什麼表擴展閱讀:
集合的性質
1、確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。
2、互異性:集合中任意兩個元素都是不同的對象。如寫成{3,2,2},等同於{2,3}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。
3、無序性:{a,b,c}{c,b,a}是同一個集合。
4、純粹性:所謂集合的純粹性,如集合A={x|x<5},集合A 中所有的元素都要符合x<5,這就是集合純粹性。
5、完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。
③ 數學中集合的代表元素用什麼表示
代表元素應該只用於等價類,等價類的寫法為[x]~,此時x就是代表元
④ 元素用什麼表示集合用什麼表示
集合通常用大寫拉丁字母表示如A,而元素用小寫拉丁字母表示如a