『壹』 小學數學能力包括哪些內容
小學數學基礎知識,以算術知識為主(整數、小數、分數、百分數、比和比例),還包括一些代數初步知識(簡易方程)和幾何初步知識(一些簡單幾何形體的認識以及周長、面積、體積、容積的求法),其內容就是這些知識范圍內的概念、定律、性質、法則、公式等.
小學數學概念包括:數的概念、數的運算的概念、幾何形體的概念、數的整除方面的概念.比和比例的概念、量的計量概念等.
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用.
運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等.這部分內容只是用於簡便運算.
運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算.
『貳』 數學課程標准數學" 四基"和" 四能"有哪些
「四基」是指: 基礎知識、基本技能、基本思想、基本活動經驗 。
「四能」是指: 發現問題能力、提出問題能力、分析問題能力、解決問題能力。
《義務教育數學課程標准(2011年版)》的課程目標從"雙基"到"四基"、從"兩能"到"四能",在原有"雙基"基礎上增加了"基本思想"和"基本活動經驗",在原有"兩能"基礎上增加了"發現和提出問題的能力"。義務教育階段的數學課程具有公共基礎的地位,要著眼於學生整體素質的提高,促進學生全面、持續、和諧發展。
(2)數學知識與技能包括什麼擴展閱讀
數學學業質量水平是六個數學學科核心素養水平的綜合表現。每一個數學學科核心素養劃分成三個水平,每個水平通過核心素養的具體表現和體現核心素養的四個方面進行質量表述,這四個方面為:情景與問題,知識與技能,思維與表達,交流與反思。
數學學業質量分為三個水平:數學學業質量水平一是高中畢業應當達到的要求,也是高中畢業的數學學業水平考試的命題依據;
數學學業質量水平二是高考的要求,也是數學高考的命題依據;
數學學業質量水平三是基於必修、選擇性必修和選修課程的某些內容對數學學科核心素養的達成提出的要求,可以作為大學自主招生的參考。
『叄』 數學與應用數學專業的知識技能
畢業生應獲得以下幾方面的知識和能力:
1.具有扎實的數學基礎,受到比較嚴格的科學思維訓練,初步掌握數學科學的思想方法;
2.具有應用數學知識去解決實際問題,特別是建立數學模型的初步能力,了解某一應用程序;
3. 能熟練使用計算機(包括常用語言、工具及一些數學軟體),具有編寫簡單應用程序的能力;
4.了解國家科學技術等有關政策和法規;
5.了解數學科學的某些新發展和應用前景;
6. 有較強的語言表達能力,掌握資料查詢、文獻檢索及運用現代信息技術獲取相關信息的基本方法,具有一定的科學研究和教學能力。
『肆』 優秀的數學教師應該具備哪些知識技能
做一名學生喜歡的數學教師, 讓學生喜歡上你的數學課, 就應該用自身的人格魅力去吸引學生,。
一、過硬的專業知識
教師必須有扎實的專業知識,才能把課教好教活。比如,作為數學教師,你就應該是解題的能手,並且要能夠具有幫助學生解答疑難問題的能力, 否則,你就很難在學生中建立威信, 也很難在課堂上應付自如。專業知識一般指數學教師特有的數學能力。包括以下幾個方面:
1、計算能力
主要體現在對算理的透徹理解,對運算性質、運算定律的靈活應用以及對數據、運算順序、算式特點的巧妙處理和高度敏感,使復雜的計算變得簡單,從而正確、迅速、合理、靈活地算出結果。
2、邏輯思維能力
主要體現在教師應能用分析、綜合等方法整理教材知識結構、探索和表述解題思路,從而增強解題能力。在學生數學概念的形成和鞏固、數學規律的探索和猜想的建立中能熟練地應用分析、綜合、比較、抽象、歸納、類比等方法進行教學。
3、空間想像力
要求能從空間圖形及某些意志條件分析中圖形中點、線、面、體之間的關系,能畫出實物、模型的直觀圖,能根據一段文字的描述想像出幾何形體,並能准確地畫出某些幾何形體的直觀圖。
4、運用數學知識解決實際問題的能力
小學數學教師不但要具有運用數學知識解決實際問題的能力,而且還要通過各種教學實踐活動或解答與生產日常生活中的題目,來培養學生運用數學知識解決間的實際問題的能力,所以教師要善於從生產或日常生活中發現編制應用題的題材,同時也要掌握各種數學思想方法,提高解題能力。
但是,僅僅精通本專業的知識是遠遠不夠的。因為,知識之間是相互聯系的,只有廣博,才有精深。所以,要求教師在掌握數學專業知識的同時,還要博覽群書,即要有淵博的知識。所以作為數學教師不但要多看一些專業方面的書籍, 還要多看一些提升素養的書籍, 來豐富自身的人格魅力, 是很有必要的。
二、鑽研教材、處理教材的能力
鑽研教材、處理教材的另一個方面就是精心選編練習。如果你認為教材中配備的練習不合適,就要自己選編練習。一定要克服在布置作業上的隨意性,因為那樣等於是在浪費學生的時間。一個優秀的數學教師,就應該具有根據教材靈活編寫練習題的能力, 哪些知識學生掌握起來有困難, 可以突出重點難點的多練習練習, 才有助於學生對知識的進一步鞏固掌握。
『伍』 舉例說明什麼是數學知識、技能、能力和思想方法
數學思考方法指解決數學問題的思路,一般有順向思維和逆向思維,還有類比的思考方法。解題方法指的是具體的解題技巧,比如假設法,代數法(就是方程)表格法、畫圖法等。技能指的是運用這些基本方法的熟練程度,而數學能力則是指人的數學綜合素質,包括思路是否清晰,運用的解題方法是否合適,計算能力思維能力是否達到一定水平等。至於數學知識這個概念,則很籠統,只要是涉及到數學方面的生活常識、公理定理、公式、解題方法等等,都可以稱為數學知識,比如一年有四季,一時有60分等,當然也包括以上列舉的能力方法等幾項內容。
『陸』 什麼叫數學技能
數學技能:就是有相關數學基礎知識、計算能力及數學實踐應用及綜公應用的技術能力,叫數學技能。
『柒』 數學知識與技能目標的四個層次是什麼
一是數學知識技能的教學層次。重在解決「是什麼、怎麼樣做」的問題;
二是數學思想方法的教學層次。重在解決「運用什麼樣的思想與方法去做」的問題;
三是數學思維的教學層次 。重在解決「怎麼想到這樣做、為什麼要這樣做」的問題;
四是數學精神與文化的教學層次 。重在促進學生心智、個性、觀念、精神等和諧協調的發展。
『捌』 數學七大能力包括哪些
數學七大能力包括:抽象概括能力、空間想像能力、推理論證能力、運算求解能力、數據處理能力、應用意識、創新意識
具體釋義:
1、抽象概括能力
抽象是指舍棄事物非本質的屬性,揭示其本質屬性:概括是指把僅僅屬於某一類對象的共同屬性區分出來的思維過程。抽象和概括是相互聯系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎上得出某種觀點或某個結論。
抽象概括能力是對具體的、生動的實例,在抽象概括的過程中,發現研究對象的本質;從給定的大量信息材料中概括出一些結論,並能將其應用於解決問題或作出新的判斷。
2、空間想像能力
能根據條件作出正確的圖形,根據圖形想像出直觀形象;能正確地分析出圖形中基本元素及其相互關系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地解釋揭示問題的本質。
空間想像能力是對空間形式的觀察、分析、抽象的能力,主要表現為識圖、畫圖和對圖像的想像能力。識圖是指觀察研究所給圖形中幾何元素之間的相互關系。
畫圖是指將文字語言和符號語言轉化為圖形語言 以及對圖形添加輔助圖形或對圖形進行各種變換。對圖形的想像主要包括有圖想圖和無圖想圖兩種,是空間想像能力高層次的標志。
3、推理論證能力
推理是思維的基本形式之一,它由前提和結論兩部分組成,論證是由已有的正確的前提到被論證的結論的一連串的推理過程,推理既包括演繹推理,也包括合情推理:論證方法及包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法。一般運用和情推理進行猜想,再運用演繹推理進行證明。
中學數學的推理論證能力是根據已知的事實和已獲得的正確數學命題,論證某一數學命題真實性的初步的推理能力。
4、運算求解能力
會根據法則、公式進行正確運算、變形和數據處理,能根據問題的條件尋找與設計合理、簡捷的運輸途徑,能根據要求對數據進行估計和近似運算。
運算求解能力是思維能力和運算技能的結合。運算包括對數學的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等。
運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調整運算的能力。
5、數據處理能力
會收集、整理、分析數據,能從大量數據中抽取對研究問題有用的信息,並作出判斷。數據處理能力主要依據統計案例中的方法對數據進行整理、分析,並解決給定的實際問題。
6、應用意識
能綜合應用所學數學知識、思想和方法解決問題,包括解決在相關學科、生產、生活中簡單的數學問題;能理解對問題陳述的材料,並對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數學問題。
能應用相關的數學方法解決問題進而加以驗證,並能用數學語言正確地表達和說明。 應用的主要過程是依據現實生活背景,提煉相關的數量關系,將現實問題轉化為數學問題,構造數學模型,並加以解決。
7、創新意識
能發現問題、提出問題,綜合與靈活地應用所學的數學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考,探究和研究,提出解決問題的思路,創造性地解決問題。
創新意識是理性思維的高層次表現,對數學問題的」觀察、猜測、抽象、概括、證明」,是發現問題和解決問題的重要途徑,對數學知識的遷移、組合、融會的程度越高,顯示出的創新意識越強。
(8)數學知識與技能包括什麼擴展閱讀
數學思維與數學思維能力的培養:
1、數學思維概述數學思維:
指在數學活動中的思維,是人腦和數學對象(空間形式、數量關系、結構關系)交互作用並按照一定思維規律認識數學內容的內在理性活動。它既具有思維的一般性質,又有自己的特性。最主要的特性表現在其思維的材料和結果都是數學內容。
2、數學思維的分類:
集中思維與發散思維:集中思維是朝著一個目標、遵循單一的模式,求出歸一答案的思維,又稱為求同思維;發散思維則表現在解決問題時,能根據已提供的條件,利用已有的知識經驗,從多個方向、不同途徑去探索思考,以尋求新的解決問題和途徑和方法,發散思維又稱為求異思維。
再造性思維與創造性思維:再造性思維是指原有的經驗和已經掌握的解題方法、策略,在燈似的情境中直接解決問題的思維方式。創造性思維是指在強烈的創新意識的指導下,指導頭腦中已有的信息重新加工,產生具有進步意義的新設想、新方法的思維。
3、數學思維的一般方法:
觀察與實驗: 觀察:是受思維影響的,有目的、有計劃地通過視覺器官去認識事物、狀態及上線關系的一種主動活動。觀察是思維的窗口。實驗:是有目的、有控制地創設一些有利觀察對象,並對其衽觀察和研究的活動方式。
4、初步邏輯思維能力及其培養:
邏輯思維是數學思維的核心。邏輯思維是一種確定的、前後一貫的、有條有理的、有根有據的思維。 概念明確:概念是反映客觀事物本質屬性的一種思維方式。判斷准確:判斷是對某個事物的性質,現象作出肯定或否定的思維方式。
數學判斷是對數量關系和空間形式有所肯定或否定的一咱方式。表達數學判斷的語句又稱數學命題。判斷是由主概念、謂概念和聯系詞三部分組成。 推理符合邏輯:推理是由一個或幾個已知的判斷推出一個新判斷的形式。 推理分歸納推理、演繹推理和類比推理三種。
歸納推理(從特殊到一般);演繹推理(從一般到特殊);類比推理(從特殊到特殊)培養初步邏輯思維能力的基本途徑: 要挖掘教材中的智力因素,把培養思維能力貫穿於教學的全過程。要給學生提供足夠的材料。
要順著學生的思維,重視學習過程。 要重視數學語言的表述。初步形象思維能力及其培養形象思維:是依託對形象材料的意會,從而對事物作出有關理解的思維。 形象思維的基本形式是表象、直感和想像。
『玖』 小學數學新課程標准2011的基本技能包含哪些內容,在教學中如何實現這一目標
數學教學活動必須激發學生興趣,調動學生積極性,引發學生思考;要注重培養學生良好的學習習慣、掌握有效的學習方法。學生學習應當是一個生動活潑的、主動地和富有個性的過程,除接受學習外,動手實踐、自主探索與合作交流也是數學學習的重要方式,學生應當有足夠的時間和空間經歷觀察、實驗、猜測、驗證、推理、計算、證明等活動過程。教師教學應該以學生的認知發展水平和益友的經驗為基礎,面向全體學生,注重啟發式和因材施教,為學生提供充分的數學活動的機會。要處理好教師講授和學生自主學習的關系,通過有效的措施,啟發學生思考,引導學生自主探索,鼓勵學生合作交流,使學生真正理解和掌握基本的數學知識與技能、數學思想和方法,得到必要的數學思維訓練,獲得廣泛的數學活動經驗。