導航:首頁 > 數字科學 > 學生怎麼學數學題

學生怎麼學數學題

發布時間:2023-06-15 18:33:20

㈠ 如何學好數學題

數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
*****************************************************************************************************
一、 高中數學課的設置
高中數學內容豐富,知識面廣泛,將有:《代數》上、下冊、《立體幾何》和《平面解析幾何》四本課本,高一年級學習完《代數》上冊和《立體幾何》兩本書。高二將學習完《代數》下冊和《平面解析幾何》兩本書。一般地,在高一、高二全部學習完高中的所有高中三年的知識內容,高三進行全面復習,高三將有數學「會考」和重要的「高考」。
二、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—1800」范圍內的,但實際當中也有7200和「—300」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、 有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是 的數是_____.②從數軸角度理解:什麼樣的兩點表示數是互為相反數的。(關於原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類

㈡ 學好數學的十個方法及技巧

學好數學的十個方法及技巧

學好數學的十個方法及技巧,想要學好數學不能只動腦思考,一定要勤動手多做題,數學作為孩子學習的第一個理科學科,這將會伴隨孩子很長的一段時間,學好數學的十個方法及技巧。

學好數學的十個方法及技巧1

我們都知道數學這門學科是一個非常具有邏輯性的一門學科,很多學生在學習數學的過程中都會遇到很多的難題,這讓學生和家長非常的困擾。

學生要知道數學成績其實是非常非常能夠拉開分值的一個科目,所以在這門學科上能夠學好真的是非常的有幫助。

不過,很多家長和學生可能都會覺得數學學不好是因為沒有天賦,但是,其實並不完全是這樣,掌握好的學習的方法和技巧才是主要。

這期就來跟大家聊一聊,沒有天賦怎麼學好數學?掌握好學習的方法和技巧,你也可以學好!

上課認真聽講,課堂是掌握和拓展數學知識的重要環節

想要學好數學,上課認真聽講是一個重要的環節。上課的時候,老師一般就會講一些關於做題思路和一些拓展的知識內容,也就說上課的時候一般都是一些干貨,所以這是學生不能錯過的東西。

相信如果學生能夠在上課的時候跟上老師的思路,那麼一般的情況下,這樣的學生數學成績也就不差了,所以想要有一個好的數學成績,那上課的時候就要認真的聽講了。

培養自學能力

老師在講解新的概念和公式上,總是通過我們已經學過的知識來推導新知識。這樣就是通過已知學習未知。可以說是水到渠成。

過去在一次家長會上,校長的一句話讓我記憶很深,他說我是教數學的,學生數學學得好不是我教得好,而是學生自己悟出來的。

當然老師是謙虛的,但是我們也從中看出了一個道理,那就是自己要主動學習,一個班幾十個學生為何學習成績千差萬別,就是自學能力的差距。

自學能力越強,悟性就越高。隨著學生的不斷長大,他們對老師的依賴性正在逐漸減弱,自學的能力不斷增強。

數學也需要記憶

文科有大量知識需要我們去記憶,很多人錯誤的認為數學就不需要背,很多名校的老師都表示數學基礎知識也需要花費時間去記憶,我們可以每天投入15分鍾背本月、本學期學過的知識與筆記,要做到蓋住以後能嘗試回憶出來,

根據人類遺忘規律,千萬不要只背一次就放過,而是要反復回頭復習,直到完全記住,要把所有公式、筆記徹底記牢,特別是對於基礎差的同學,這一招提高數學成績很明顯。

整理錯題集,方便日後復習

學生在學習數學的過程中,整理錯題集這個學習方法是必須要學會的,而且還要將錯題集整理的清楚明白,要能夠方便自己日後去復習。

否則,自己記得密密麻麻自己都不想去看的話,那麼這就是沒有意義的事情了。

錯題集的作用,對於數學這個學科來講真的是非常重要,因為錯題集其實就是一個知識點的整理和延伸,懂學習的學習生會在錯題集上加上解題思路。

認真審題

很多家長發現,在問孩子數學題目為什麼做錯時,答案都是:「題目看錯了」。題目沒審清,學習再好的孩子也答不對題。

通常情況下,審題錯誤分為兩種:

1、文字、數字漏看、錯看

2、題意理解錯誤

為了讓孩子避免發生這樣的錯誤,可以養成「一掃、二劃、三落」的習慣!

首先,掃一遍題目,確定這是一道題考的是什麼。是雞兔同籠、相遇問題,還是工程問題?

有了初步的概念後,就能知道題目的大概套路是什麼,解題時的基本思路也就形成了。

其次,劃出重點詞,像是至少、不超過、占等詞。這樣可以讓孩子在解題過程中,不會出現計算錯誤等問題,還能直接簡化題目。

最後,才是落筆。將題目中所有的已知條件,結合基本思路,答案也就躍然紙上了。

多讀書

被譽為「東方國度上燦爛的數學之星」「東方第一幾何數學家」「數學之王」的蘇步青,無論是在小學,中學還是大學,成績都十分優異,他覺得學習數學的方法,除了多做題就是多讀書。

蘇步青認為,學習數學特別重要的一步,就是要弄清楚基本概念,也就是我們常說的定義,以及有每個基本概念引出的定理,還有每個基本概念是如何演出的?

這都需要我們仔仔細細的閱讀數學書籍,數不清說對於數學書中的某些內容,有時他自己也不是一下子就很明白,自己也要多讀很多遍才能清楚。

學好數學的十個方法及技巧2

學數學要在理解的基礎上去做題,學會數學關鍵在於個人的悟性,除了上課認真聽講、課後做匹配練習外,還需要練就獨立解題能力與總結反思能力,學會以不變應萬變。

學數學最重要的就是解題能力。要想會做數學題目,就要有大量的練習積累,知道各類型題目的解題步驟與方法,題目做多了就有手感了,再拿出類似的題目才會有解題思路。

其次是學會預習。解題思路不是直接就有的,也並非通過做幾道簡單的題目就能輕易獲得,而是在預習過程中不斷積累出來的。因此,預習在數學學習過程中起到了非常重要的作用。預習一方面能夠讓大家提前對數學知識有所了解,另一方面能夠培養數學獨立學習能力。

學數學必須多做題。理解了數學基本定義和知識點以後,就需要通過做對應習題去鞏固知識,多做多練才能更好地掌握所學知識,學數學也是看花容易綉花難的,只有真正動手去做題、經歷了實操過程能學會。

做完題要學會總結。對於做過的題型及做錯的題目要善於進行分類總結,再遇到類似的題目要會分析,知道哪裡容易出現問題,然後盡量去避免。同時在做題和總結過程中,要學會舉一反三,抓住考點去復習。

學數學要會看書和查缺補漏。數學基礎考點都來源於課本,大家之所以覺得書沒什麼可看,是因為對教材掌握程度不夠。書上的每個定義都要理解後倒背如流,深究每個詞語的含義,做懂每個例題,會推導數學公式及變形公式。

做數學題目方法不唯一,只要是邏輯合理、能一步步推導出結論的方法都可以,不必拘泥於老師講授的方法。做數學小題也可以採用畫圖、試值法、代入法等去做,只要沉下心去研究,功夫不負有心人,數學總能夠學好。

學好數學的十個方法及技巧3

1、重視計算

數學的計算學習就像語文的識字學習,是最基本的。

不識字,語文讀不好;計算差,數學同樣學不好。而且計算好,會給孩子數學學習提供很大的幫助。

家長可以每天讓孩子做2分鍾口算。一開始,2分鍾內能只能做完20道口算,但之後,你會發現孩子會越來越快,正確率越來越高。

2、重視生活中的數學

其實數學的學習對生活的影響很大,它能提供很多的幫助。

例如:

買東西、計算利率、盈利等等,這些都用到數學。你可以在生活中,有意識的跟孩子提數學問題,讓他解答。很簡單,你帶孩子去買菜,一斤蘋果5元,買3斤多少錢,給阿姨20元,找回多少錢。

別小看這些,在小學數學學習中,解決問題占的分數是最多的,而解決問題無非就是判斷用加減乘除中的哪種來列式解答,這些問題其實就是生活中的問題,孩子在生活中接觸多,自然就會解答。

3、主動預習

新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。因此,培養自學能力,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。

如自學例題時,要弄清例題講的什麼內容,告訴了哪些條件,求什麼,書上怎麼解答的,為什麼要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

有些家長頭疼孩子上課效率很差;這其中很關鍵的原因是沒有做好預習;自然也就做不到有的放矢

4、思考是數學學習方法的核心

一些孩子對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題。

如有這樣一道題讓學生解「把一個長方體的高去掉2厘米後成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?」

孩子對求體積的公式雖記得很熟,但由於該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師家長的引導下逐漸掌握解題時的思考方法。這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;

從圖形變化關系講:長方形→正方形;從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積;

經啟發,孩子分析後,學生根據其思路(可畫出圖形)進行解答。

有的學生很快解答出來:

設原長方體的底面長為X,則2X×4=48

得:X=6(即正方體的棱長),

這樣得出正方體的體積為:6×6×6=216(立方厘米)。

所以說,在學習過程中,老師家長最大的作用是:啟發。

孩子在老師家長的引導下,去主動思考解題的思路,掌握學習方法!

5、培養閱讀興趣

假期和一位資深老師聊到孩子數學學習問題,分享一段重點:

「您孩子數學學習是什麼情況?」老師問。

「題不難成績還不錯。一遇難題,就好像深入不進去。」提起女兒的數學,我真頭疼。

「那她平時喜歡讀書嗎?」

「不是特別喜歡,但也不是一點不讀。平時喜歡看漫畫之類。」我想了想說。

「哦,那科普讀物和一些經典名著讀過嗎?」老師接著問。

「沒有,我認為對學習有用的書她都讀不懂,也不願意讀。」我有些不好意思地回答。

「是有些問題。」老師頓了頓說,「孩子將來中學要想學好數理化,必須小學得多讀書,特別是有深度有人文素養的好書。多讀好書的孩子思維活躍,視野也開闊,到了高年級就更能顯示出優勢。」

「我們帶過的數學成績好的同學大多6、7歲就能看書,在小學階段就大量閱讀有深度有人文素養的好書,愛思考,愛看書,這群孩子問問題的深度和廣度有時把我都難倒了。

聽她這么一說,我這才更加理解「學生讀書越多,他的思維就越清晰,他的智慧力量就越活躍。」

閱讀對數學的重要性

很多家長總覺得閱讀所帶來的改變很緩慢,而考試就在眼前,所以還是覺得不如補課來得直接,效果更顯著。

其實:閱讀的功效絕不僅僅是豐富文化積淀,提高語文素養,而是幫助孩子點燃思維的火花,拓展視野,深化思維,提高學習力。

所以,閱讀不僅僅是語文的事情,它對於任何一門學科來說都是首要的、。有研究發現,一年級或更早開始大量閱讀的`孩子比三年級開始閱讀的孩子在其後的中小學學習,尤其是數理化學習方面潛力更大。

因為前者在其後的學習生涯中具備了深閱讀能力和習慣,也就是理解能力很強,而後者閱讀時思維很膚淺,理解能力自然很弱。這個現象在初二這個分水嶺年級就表現得很明顯了。

所以,不要等到中小學遇到困難才沒完沒了地補課「拉一把」,而是要讓孩子4-7歲解決識字問題,6-9歲就能愛看書,9歲後就會大量閱讀、讀好書。

六種解題思想

1、函數與方程思想

函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。

2、數形結合思想

數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以藉助幾何特徵去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特徵用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。

解題類型

①「由形化數」:就是藉助所給的圖形,仔細觀察研究,提示出圖形中蘊含的數量關系,反映幾何圖形內在的屬性。

②「由數化形」 :就是根據題設條件正確繪制相應的圖形,使圖形能充分反映出它們相應的數量關系,提示出數與式的本質特徵。

③「數形轉換」 :就是根據「數」與「形」既對立,又統一的特徵,觀察圖形的形狀,分析數與式的結構,引起聯想,適時將它們相互轉換,化抽象為直觀並提示隱含的數量關系。

3、分類討論思想

分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。

解決分類討論問題的關鍵是化整為零,在局部討論降低難度。

常見的類型

類型1:由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;

類型2:由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;

類型3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;

類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。

類型5:由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。

分類討論思想是對數學對象進行分類尋求解答的一種思想方法,其作用在於克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。

4、轉化與化歸思想

轉化與化歸是中學數學最基本的數學思想之一,是一切數學思想方法的核心。數形結合的思想體現了數與形的轉化;函數與方程的思想體現了函數、方程、不等式之間的相互轉化;分類討論思想體現了局部與整體的相互轉化,所以以上三種思想也是轉化與化歸思想的具體呈現。

轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。 常見的轉化方法

①直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題;

②換元法:運用「換元」把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易於解決的基本問題;

③數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑;

④等價轉化法:把原問題轉化為一個易於解決的等價命題,達到化歸的目的;

⑤特殊化方法:把原問題的形式向特殊化形式轉化,並證明特殊化後的問題,使結論適合原問題;

⑥構造法:「構造」一個合適的數學模型,把問題變為易於解決的問題;

⑦坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑。

5、特殊與一般思想

用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。

6、極限思想

極限思想解決問題的一般步驟為:①對於所求的未知量,先設法構思一個與它有關的變數;②確認這變數通過無限過程的結果就是所求的未知量;③構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。

㈢ 初三學生應該如何學習數學呢

初三學生,在快節奏的總復習時,難免會有些不適應。為什麼?考試時感覺還可以,發下試卷後看看自己沒錯幾道題,成績卻不是那麼理想。數學總復習需要怎麼努力呢?

任何事情都是熟能生巧的,學習數學時多做習題,更好的鞏固所學的內容,可以提高自己解題的效率,提升自己的答題准確率,提升自己的數學學習成績。

㈣ 如何學習數學 6種方法來學習數學

目錄方法1:成為一名好的數學學生的關鍵1、堅持到課堂聽課。2、緊跟老師的思路學習。3、當天的作業當天完成。4、如果你需要幫助的話,也可以在課堂外尋求幫助。方法2:在學校學習數學1、從算術開始。2、繼續學習初級代數課程。3、繼續學習代數。4、學習幾何學。5、學習代數II。6、學習三角函數。7、學習一些微積分。方法3:數學基礎—掌握加法1、從"+1"開始。2、理解零。3、學習加倍。4、使用映射學習其他加法方式。5、學習10以上的加法。6、加上更大的數。方法4:數學基礎—減法原理1、從"回退1"開始。2、學習加倍減法。3、熟記結果集。4、找出缺失的數。5、熟記20以內的減法結果。6、嘗試進行不需要借位的2位數減去1位數的練習。7、學習位值為帶借位的減法做好准備。8、借位減法。方法5:數學基礎—掌握乘法1、從0和1開始。2、熟記乘法表。3、練習解決1位數乘法問題。4、對2位數和1位數進行相乘。5、對2個2位數進行相乘。6、進行相乘並重組各列。任何人都能學習數學,無論是高等數學還是數學基礎。本文首先討論如何成為一名好的數學學生,並介紹數學課程的基本學習進程以及你應該在每門課中學習的基本要素。然後,本文將介紹學習數學需要掌握的基礎知識。這些內容無論是對小學生還是其他年齡段需要鞏固基礎知識的人都大有裨益。
方法1:成為一名好的數學學生的關鍵
1、堅持到課堂聽課。如果你錯過了一堂課,那麼你只能通過你的同學或課本才能學習到相關的概念了。通過朋友或者從課本上學習相關的觀念,其學習效果總是比不上向老師學習。應該准時到課。事實上,提早一點到教室、打開你的筆記本放到適當的位置並准備好你的計算器,那麼當你的老師准備好開始講課時,你自己也已經進入狀態了。
只有在身體不適時才請假。如果你錯過了某一堂課,應該向同學了解老師的講課內容以及所布置的作業。
2、緊跟老師的思路學習。如果你的老師正在教室前進行解題,那麼你可以在自己的筆記本上跟著做。確保你的筆記寫得清楚且易於閱讀。不要只是簡單地記下問題。也把老師所講到的有助於你理解相關概念的內容記下來。
嘗試解決老師在課堂上提出的思考題,仔細想一想。當老師在教室中巡視學生的解題情況時,可以就你的問題向老晌襪轎師請教。
當老師在解題時應參與其中。不要等待老師提問。當你知道結果時應主動回答,當你對教學內容感到困惑時應舉手提問。
3、當天的作業當天完成。當天的作業當天完成的話,能夠加強對有關概念的理解和記憶。有時,你可能無法完成當天的家庭作業。但是你應該保證在下一次上課前完成你的作業。
4、如果你需要幫助的話,也可以在課堂外尋求幫助。在你的老師的空餘時間或者工作時間,向他或她尋求幫助。如果你的學校有數學中心的話,你也可以了解它的開放時間並前去尋求幫助。
加入一個學習小組。好的學習小組通常由4到5名不同水平的學生組成。如果你的數學屬於"C"級水平,那麼你應該加入有2或3名"A"級或"B"級學生組成的小組以便提升自己的水平。不要加入只有比你的成績還差的學生組成的小組中。
方法2:在學校學習數學
1、從算術開始。在大部分學校中,學生會在低年級期間學習算術。算術包括了基礎的加減乘除四則運算。多做練習。不斷地解決算術問題是學習基礎運算的最佳方法。找出一些能夠為你給出大量不同的數學問題的軟體。同時,進行計時練習以便提高你的速度。
你也可以在網上找出一些算術練習題並在你的手機設備上下載算術應用。
2、繼續學習初級代數課程。該課程將讓你掌握以後在解決代數問題時必需的基礎知識。學習分數和小數。你將會學習分數和小樹的加減乘除。關於分數,你將會學習如何約分以及解釋混合分數。宴肆關於小數,你需要理解位值,你將會在應用題中用上小數。
學習比率、比例和百分比。這些概念有助你進行比較。
學習基礎幾何。你將學習所有的圖形以及3D概念。你也將學習面積、周長、體積和表面積等概念以及表面積和平衡線、垂直線、角度等內容。
理解基礎統計學。好喚在初級代數課程中,你要學習的統計學知識主要包括圖表、散點圖、枝葉圖、柱狀圖等圖形化工具的應用。
學習代數基礎。這將包括各種基本概念,例如解決帶變數的簡單方程、學習分布屬性等各種屬性、畫出簡單方程的圖形以及解決不等式。
3、繼續學習代數。在代數學習的第一年中,你將學習代數所運用的基本符號。你也會學習:解決帶變數的方程和不等式。你將學習如何通過筆演算法和圖形法的方法解決這些問題。
解決實際問題。你可能會感到驚喜,你在以後將會面對的日常問題中,將需要運用解決代數應用題的能力。例如,你將運用代數方法計算你的銀行賬戶或投資中所獲得的利息。你也可以運用代數方法以你的車速為基礎計算出你將在旅途上花費的時間。
使用指數。當你開始解決多項式方程(同時包含數字和變數的表達式)時,你將需要理解如何使用指數。這也包括如何使用科學表達法。掌握指數應用後,你可以學習多項式表達式的加減乘除。
解決平方和平方根問題。當你掌握了這一方面時,你將能熟記多個完全平方數。你也將能夠計算包含有平方根的方程式。
理解函數和圖。在代數學中,你將需要學習圖形方程。你將需要學習如何計算線條的斜率、如何把方程轉換為點斜式以及如何使用斜截式計算某一線條在x軸和y軸上的截距。
解決方程組。有時,你將會得到2條均帶有x和y變數的獨立方程,而你必須為兩條方程解決求得x或y。幸運的是,你將學習到解決這類方程問題的多種方法,包括圖形法、替換法和相加法。
4、學習幾何學。在幾何學中,你將學習到線條、線段、角度和圖形的屬性。你將熟記大量的定理和推論,它們將有助你理解幾何的規則。
你將學習如何計算圓面積、如何使用畢達哥斯拉定理計算特殊三角形的角度和三邊的關系。
你將在以後的標准化考試中遇到大量的幾何問題,例如SAT、ACT和GRE。
5、學習代數II。代數II以你在代數I中所學到的概念為基礎,但增加了更復雜的主題,例如二次方程式和矩陣。
6、學習三角函數。你將學習到三角函數的有關內容:正弦、餘弦、正切等等。通過三角函數,你將學習到計算角度和線段長度的很多實用方法,這些技巧對於將要進入建築業、建築學、工程學或者測量學的人非常重要。
7、學習一些微積分。微積分聽上去令人生畏,但卻是一種極好的工具,有助我們理解我們周圍的數字和世界的行為。通過微積分你將學習到函數和極限的相關知識。你將了解到它們的性質以及接觸到一些有用的函數,包括e^x和對數函數。
你還將學習到有關的計算方法和導數的使用。通過一階導數你能夠了解到某一方程的正切線的斜率。例如,導數能讓你了解在非線性狀態下某些事物變化的比率。二階導數能夠讓你了解某一函數在特定區間是在遞增還是遞減,從而確定函數的凹度。
積分將能讓你學會如何計算曲線下的圖形面積以及體積。
高中微積分通常只會學習到序列和級數。雖然學生們還不會遇到太多級數的應用,但它們對於將要繼續學習微分方程的人是相當重要的。
方法3:數學基礎—掌握加法
1、從"+1"開始。加上1到某一個數將得到數列上下一個更大的數。例如,2 + 1 = 3。
2、理解零。任何數字加上零將等於原數,因為"零"等同於"無"。
3、學習加倍。加倍就是把兩個相同的數進行相加的問題。例如,3 + 3 = 6就是包含加倍問題的一個等式。
4、使用映射學習其他加法方式。在以下例子中,你可以通過映射學習當3加上5,2加上1時所發生的情況。請自行嘗試"加2"的問題。
5、學習10以上的加法。學習把3個數加起來得出大於10的結果。
6、加上更大的數。學習把個位上的結果進位到十位,把十位上的結果進位到百位,以此類推。進行加法時由低位開始。8 + 4 = 12,這表示你有1個10和2個1。把2寫到個位上。
把1寫到10位上。
把十位上的數加起來。
方法4:數學基礎—減法原理
1、從"回退1"開始。對一個數減去1將回退到前一個數。例如,4 - 1 = 3。
2、學習加倍減法。例如,你進行加倍加法5 + 5得到10。那麼可得到相反的等式10 - 5 = 5。如果5 + 5 = 10,則10 - 5 = 5。
如果2 + 2 = 4,則4 - 2 = 2。
3、熟記結果集。例如:3 + 1 = 4
1 + 3 = 4
4 - 1 = 3
4 - 3 = 1
4、找出缺失的數。例如,___ + 1 = 6(答案是5)。
5、熟記20以內的減法結果。
6、嘗試進行不需要借位的2位數減去1位數的練習。減去個位上的數,並減去十位上的數。
7、學習位值為帶借位的減法做好准備。32 = 3個10和2個1。
64 = 6個10和4個1。
96 = __ 個10和 __ 1。
8、借位減法。你需要進行42 - 37減法運算。你由對個位上的2 - 7減法開始。然而,這行不通!
從十位上借10並把它和個位數結合。這時你不再有4個10,你只有3個10了。現在你所具有的也不再是2個1,而是12個1了。
首先對個位進行減法:12 - 7 = 5。然後,再進行十位減法。因為3 - 3 = 0,你不再需要記下0了。最終結果為5。
方法5:數學基礎—掌握乘法
1、從0和1開始。任何數乘以1等於該數本身。任何數乘以零等於零。
2、熟記乘法表。
3、練習解決1位數乘法問題。
4、對2位數和1位數進行相乘。把右下方的數乘以右上方的數。
把右下方的數乘以左上方的數。
5、對2個2位數進行相乘。把右下方的數乘以右上方的數,然後再乘以左上方的數。
把第二行的數往左移動一個數字。
把左下方的數乘以右上方的數,然後再乘以左上方的數。
把所得的各列數字相加。
6、進行相乘並重組各列。你需要對34 x 6進行相乘。你由個位列開始(4 x 6),但無法在個位列上保留24個1。
把4個1保留在個位列上。把2移動到十位列。
把6 x 3進行相乘,得到18。把進位的2加到結果中,將得到20。

㈤ 數學題很難,應該怎麼進行學習呢

大家對於成績都是比較關注的,但是小編覺得每個人的情況都是不一樣的,而且這個時候不要給自己提出太多的要求,否則可能就會導致你自己沒有辦法實現這些目標,因此這個時候你自己也會感覺十分的自卑。數學題非常難,應該怎麼進行學習呢?

因此,這些問題也是有必要引起大家重視的,如果你感覺自己的數學題做不會,那麼這個時候你也可以主動去詢問自己身邊的同學或者是老師。因此大家一定要找到適合自己的學習方法,而且小編覺得這個方法其實也是比較簡單的。

㈥ 怎麼學習數學

1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授
的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化
思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯
想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互
用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成
「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新
精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問
題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看
書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
a.記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
b.拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
c.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤
原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
d.熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
e.經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
f.
閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
g.
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
h.
學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。

閱讀全文

與學生怎麼學數學題相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:734
乙酸乙酯化學式怎麼算 瀏覽:1397
沈陽初中的數學是什麼版本的 瀏覽:1343
華為手機家人共享如何查看地理位置 瀏覽:1036
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:877
數學c什麼意思是什麼意思是什麼 瀏覽:1401
中考初中地理如何補 瀏覽:1290
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:693
數學奧數卡怎麼辦 瀏覽:1380
如何回答地理是什麼 瀏覽:1014
win7如何刪除電腦文件瀏覽歷史 瀏覽:1047
大學物理實驗干什麼用的到 瀏覽:1478
二年級上冊數學框框怎麼填 瀏覽:1691
西安瑞禧生物科技有限公司怎麼樣 瀏覽:945
武大的分析化學怎麼樣 瀏覽:1241
ige電化學發光偏高怎麼辦 瀏覽:1330
學而思初中英語和語文怎麼樣 瀏覽:1641
下列哪個水飛薊素化學結構 瀏覽:1418
化學理學哪些專業好 瀏覽:1479
數學中的棱的意思是什麼 瀏覽:1050