❶ 高中數學課程標准中如何體現基礎性和選擇性的
新的《高中數學課程標准》與過去相比有較大變化。制訂《標准》的基本理念是:高中數學課程應當是具有基礎性、多樣性與選擇性;應有利於學生形成積極主動的學習方式;應正確處理打好基礎與力求創新的關系;提高學生的數學思維能力;返璞歸真並注意適度的形式化;發展學生的數學應用意識;體現數學的人文價值;注重信息技術與數學課程內容的整合;建立合理科學的評價機制。在課程內容設置上分為數學必修課和選修課。《標准》對各部分內容的要求是:課程應當著重於數學的真正理解;課程內容增加了「數學建模」、「探究性課題」、「數學文化」3個板塊;課程要反映信息時代對數學教育的推動;演算法應進入中學;將矩陣正式列入中學課程;以向量法為主處理立體幾何教學;集合只作為語言使用;數列可以看作是函數的特例;應重新認識不等式;函數是高中數學的核心內容;微積分教學的關鍵是定位準確;數據處理應強調統計思想的內核,避免把數據處理變成「算術」計算;中學的概率統計教學應使學生真正感受到確定性和隨機性數學思維方法的本質區別;高中階段學習方程會遇到簡單的無理方程、三角方程、
指數方程,但不展開。
❷ 高中的數學特點是什麼與初中有什麼不同
1、高中數學內容抽象性、理論性更強,尤其是在高一代數中,首先碰到的就是理論性很強的函數,使一些初中數學很好的學生難以適應。
2、高中數學的思維方法向理性層次躍進,初中數學要簡單些,按一定步驟就可解決;而高中數學的解題更復雜,要求學生多角度多方面思考。
3、知識內容有所增加,學生在同樣時間內掌握知識的工作量要明顯增多。
❸ 高中數學的特點有哪些
高中數學怎麼學?高中數學難學嗎?
數學這個科目,不管是對於文科學生還是對於理科學生.都是比較重要的,因為他是三大主課之一,它占的分值比較大.要是數學學不好,你可能會影響到物理化學的學習,因為那些學科都是要通過計算.然而,這些計算也都是在數學裡面.高中數學怎麼學?有哪些好的方法?
老師讓孩子上黑板做題
數學擔負著培養孩子的運算能力,還有孩子應用知識的能力.高中數學怎樣學?還是要看學生對數學的理解程度.學生要有自己的學習方法,你不光要掌握老師上課的內容,在下課之後還要及時鞏固,加深.
❹ 高中數學課程標準的課程理念
1. 構建共同基礎,提供發展平台高中教育屬於基礎教育。高中數學課程應具有基礎性,它包括兩方面的含義:第一,在義務教育階段之後,為學生適應現代生活和未來發展提供更高水平的數學基礎,使他們獲得更高的數學素養;第二,為學生進一步學習提供必要的數學准備。高中數學課程由必修系列課程和選修系列課程組成,必修系列課程是為了滿足所有學生的共同數學需求;選修系列課程是為了滿足學生的不同數學需求,它仍然是學生發展所需要的基礎性數學課程。2. 提供多樣課程,適應個性選擇高中數學課程應具有多樣性與選擇性,使不同的學生在數學上得到不同的發展。高中數學課程應為學生提供選擇和發展的空間,為學生提供多層次、多種類的選擇,以促進學生的個性發展和對未來人生規劃的思考。學生可以在教師的指導下進行自主選擇,必要時還可以進行適當地轉換、調整。同時,高中數學課程也應給學校和教師留有一定的選擇空間,他們可以根據學生的基本需求和自身的條件,制定課程發展計劃,不斷地豐富和完善供學生選擇的課程。3. 倡導積極主動、勇於探索的學習方式學生的數學學習活動不應只限於接受、記憶、模仿和練習,高中數學課程還應倡導自主探索、動手實踐、合作交流、閱讀自學等學習數學的方式。這些方式有助於發揮學生學習的主動性,使學生的學習過程成為在教師引導下的「再創造」過程。同時,高中數學課程設立「數學探究」「數學建模」等學習活動,為學生形成積極主動的、多樣的學習方式進一步創造有利的條件,以激發學生的數學學習興趣,鼓勵學生在學習過程中,養成獨立思考、積極探索的習慣。高中數學課程應力求通過各種不同形式的自主學習、探究活動,讓學生體驗數學發現和創造的歷程,發展他們的創新意識。4. 注重提高學生的數學思維能力高中數學課程應注重提高學生的數學思維能力,這是數學教育的基本目標之一。人們在學習數學和運用數學解決問題時,不斷地經歷直觀感知、觀察發現、歸納類比、空間想像、抽象概括、符號表示、運算求解、數據處理、演繹證明、反思與建構等思維過程。這些過程是數學思維能力的具體體現,有助於學生對客觀事物中蘊涵的數學模式進行思考和做出判斷。數學思維能力在形成理性思維中發揮著獨特的作用。5. 發展學生的數學應用意識20世紀下半葉以來,數學應用的巨大發展是數學發展的顯著特徵之一。當今知識經濟時代,數學正在從幕後走向台前,數學和計算機技術的結合使得數學能夠在許多方面直接為社會創造價值,同時,也為數學發展開拓了廣闊的前景。我國的數學教育在很長一段時間內對於數學與實際、數學與其他學科的聯系未能給予充分的重視,因此,高中數學在數學應用和聯系實際方面需要大力加強。近幾年來,我國大學、中學數學建模的實踐表明,開展數學應用的教學活動符合社會需要,有利於激發學生學習數學的興趣,有利於增強學生的應用意識,有利於擴展學生的視野。高中數學課程應提供基本內容的實際背景,反映數學的應用價值,開展「數學建模」的學習活動,設立體現數學某些重要應用的專題課程。高中數學課程應力求使學生體驗數學在解決實際問題中的作用、數學與日常生活及其他學科的聯系,促進學生逐步形成和發展數學應用意識,提高實踐能力。6. 與時俱進地認識「雙基」我國的數學教學具有重視基礎知識教學、基本技能訓練和能力培養的傳統,新世紀的高中數學課程應發揚這種傳統。與此同時,隨著時代的發展,特別是數學的廣泛應用、計算機技術和現代信息技術的發展,數學課程設置和實施應重新審視基礎知識、基本技能和能力的內涵,形成符合時代要求的新的「雙基」。例如,為了適應信息時代發展的需要,高中數學課程應增加演算法的內容,把最基本的數據處理、統計知識等作為新的數學基礎知識和基本技能;同時,應刪減繁瑣的計算、人為技巧化的難題和過分強調細枝末節的內容,克服「雙基異化」的傾向。7. 強調本質,注意適度形式化形式化是數學的基本特徵之一。在數學教學中,學習形式化的表達是一項基本要求,但是不能只限於形式化的表達,要強調對數學本質的認識,否則會將生動活潑的數學思維活動淹沒在形式化的海洋里。數學的現代發展也表明,全盤形式化是不可能的。因此,高中數學課程應該返璞歸真,努力揭示數學概念、法則、結論的發展過程和本質。數學課程要講邏輯推理,更要講道理,通過典型例子的分析和學生自主探索活動,使學生理解數學概念、結論逐步形成的過程,體會蘊涵在其中的思想方法,追尋數學發展的歷史足跡,把數學的學術形態轉化為學生易於接受的教育形態。8. 體現數學的文化價值數學是人類文化的重要組成部分。數學課程應適當反映數學的歷史、應用和發展趨勢,數學對推動社會發展的作用,數學的社會需求,社會發展對數學發展的推動作用,數學科學的思想體系,數學的美學價值,數學家的創新精神。數學課程應幫助學生了解數學在人類文明發展中的作用,逐步形成正確的數學觀。為此,高中數學課程提倡體現數學的文化價值,並在適當的內容中提出對「數學文化」的學習要求,設立「數學史選講」等專題。9. 注重信息技術與數學課程的整合_現代信息技術的廣泛應用正在對數學課程內容、數學教學、數學學習等方面產生深刻的影響。高中數學課程應提倡實現信息技術與課程內容的有機整合(如把演算法融入到數學課程的各個相關部分),整合的基本原則是有利於學生認識數學的本質。高中數學課程應提倡利用信息技術來呈現以往教學中難以呈現的課程內容,在保證筆算訓練的前提下,盡可能使用科學型計算器、各種數學教育技術平台,加強數學教學與信息技術的結合,鼓勵學生運用計算機、計算器等進行探索和發現。10. 建立合理、科學的評價體系現代社會對人的發展的要求引起評價體系的深刻變化,高中數學課程應建立合理、科學的評價體系,包括評價理念、評價內容、評價形式和評價體制等方面。評價既要關注學生數學學習的結果,也要關注他們數學學習的過程;既要關注學生數學學習的水平,也要關注他們在數學活動中所表現出來的情感態度的變化。在數學教育中,評價應建立多元化的目標,關注學生個性與潛能的發展。例如,過程性評價應關注對學生理解數學概念、數學思想等過程的評價,關注對學生數學地提出、分析、解決問題等過程的評價,以及在過程中表現出來的與人合作的態度、表達與交流的意識和探索的精神。對於數學探究、數學建模等學習活動,要建立相應的過程評價內容和方法。
❺ 高中數學課程的性質是什麼
數學是研究空間形式和數量關系的科學,是刻畫自然規律和社會規律的科學語言和有效工具。數學科學是自然科學、技術科學等科學的基礎,並在經濟科學、社會科學、人文科學的發展中發揮越來越大的作用。數學的應用越來越廣泛,正在不斷地滲透到社會生活的方方面面,它與計算機技術的結合在許多方面直接為社會創造價值,推動著社會生產力的發展.數學在形成人類理性思維和促進個人智力發展的過程中發揮著獨特的、不可替代的作用.數學是人類文化的重要組成部分,數學素質是公民所必須具備的一種基本素質。
數學教育作為教育的組成部分,在發展和完善人的教育活動中、在形成人們認識世界的態度和思想方法方面、在推動社會進步和發展的進程中起著重要的作用。在現代社會中,數學教育又是終身教育的重要方面,它是公民進一步深造的基礎,是終身發展的需要。數學教育在學校教育中佔有特殊的地位,它使學生掌握數學的基礎知識、基本技能、基本思想,使學生表達清晰、思考有條理,使學生具有實事求是的態度、鍥而不舍的精神,使學生學會用數學的思考方式解決問題、認識世界。
課程性質
高中數學課程是義務教育後普通高級中學的一門主要課程,它包含了數學中最基本的內容,是培養公民素質的基礎課程。
高中數學課程對於認識數學與自然界、數學與人類社會的關系,認識數學的科學價值、文化價值,提高提出問題、分析和解決問題的能力,形成理性思維,發展智力和創新意識具有基礎性的作用。
高中數學課程有助於學生認識數學的應用價值,增強應用意識,形成解決簡單實際問題的能力。
高中數學課程是學習高中物理、化學、技術等課程和進一步學習的基礎。同時,它為學生的終身發展,形成科學的世界觀、價值觀奠定基礎,對提高全民族素質具有重要意義。
課程的基本理念
構建共同基礎,提供發展平台 高中數學課程具有基礎性,它包括兩方面的含義:第一,在義務教育階段之後,為學生適應現代生活和未來發展提供更高水平的數學基礎,使他們獲得更高的數學素養;第二,為學生進一步學習提供必要的數學准備。高中數學課程由必修系列課程和選修系列課程組成,必修系列課程是為了滿足所有學生的共同數學需求;選修系列課程是為了學生的不同數學需求,它仍然是學生發展所需要的基礎性數學課程。
提供多樣課程,適應個性選擇 高中數學課程具有多樣性與選擇性,使不同的學生在數學上得到不同的發展。為學生提供選擇和發展的空間,為學生提供多層次、多種類的選擇,以促進學生的個性發展和對未來人生規劃的思考。
倡導積極主動、勇於探索的學習方式 高中數學課程倡導自主探索、動手實踐、合作交流、閱讀自學等學習數學的方式。這些方式有助於發揮學生學習的主動性,使學生的學習過程成為在教師引導下的「再創造」過程。同時,課程設立「數學探究」「數學建摸」等學習活動,為學生形成積極主動的、多樣的學習方式進一步創造有利的條件,以激發學生的數學學習興趣,鼓勵學生在學習過程中,養成獨立思考、積極探索的習慣。力求通過各種不同形式的自主學習、探究活動,讓學生體驗數學發現和創造的歷程,發展創新意識。
注重提高學生的數學思維能力 高中數學課程注重提高學生的數學思維能力,這是數學教育的基本目標之一。人們在學習數學和運用數學解決問題時,不斷地經歷直觀感知、觀察發現、歸納類比、空間想像、抽象概括、符號表示、運算求解、數據處理、演繹證明、反思與建構等思維過程。這些過程是數學思維能力的具體體現,有助於學生對客觀事物中蘊涵的數學模式進行思考和做出判斷。數學思維能力在形成理性思維中發揮著獨特的作用。
發展學生的數學應用意識 當今知識經濟時代,數學正在從幕後走向台前,數學和計算機技術的結合使得數學能夠在許多方面直接為社會創造價值,同時,也為數學發展開拓了廣闊的前景。高中數學課程提供基本內容的實際背景,反映數學的應用價值,開展「數學建摸」的學習活動,設立體現數學某些重要應用的專題課程。力求使學生體驗數學在解決實際問題中的作用、數學與日常生活及其他學科的聯系,促進學生逐步形成和發展數學應用意識,提高實踐能力。
與時俱進的認識「雙基」 隨著時代的發展,特別是數學的廣泛應用、計算機技術和現代信息技術的發展,數學課程設置和實施重新審視基礎知識、基本技能和能力的內涵,形成符合時代要求的新的「雙基」。
強調本質,注意適度形式化 形式化是數學的基本特徵之一。在數學教學中,學習形式化的表達是一項基本要求,但是不能只限於形式化的表達,要強調對數學本質的認識, 高中數學課程力求返璞歸真,努力揭示數學概念、法則、結論的發展過程和本質。
體現數學的文化價值 數學是人類文化的重要組成部分。數學課程應適當反映數學的歷史、應用和發展趨勢,數學對推動社會發展的作用,數學的社會需求,社會發展對數學發展的推動作用,數學科學的思想體系,數學的美學價值,數學家的創新精神。數學課程應幫助學生了解數學在人類文明發展中的作用,逐步形成正確的數學觀。為此,高中數學課程提倡體現數學的文化價值,並在適當的內容中提出對「數學文化」的學習要求,設立「數學史選講」等專題。
注重信息技術與數學課程的整合 現代信息技術的廣泛應用正在對數學課程內容、數學教學、數學學習等方面產生深刻的影響。高中數學課程提倡實現信息技術與課程內容的有機整合,整合的基本原則是有利於學生認識數學的本質,鼓勵學生運用計算機、計算器等進行探索和發現。
建立合理、科學的評價體系 現代社會對人的發展的要求引起評價體系的深刻變化。高中數學課程應建立合理、科學的評價體系,包括評價理念、評價內容、評價形式和評價體制等方面。評價既要關注學生數學學習的結果,也要關注他們數學學習的過程;既要關注學生數學學習的水平,也要關注他們在數學活動中所表現出來的情感態度的變化。
課程目標
高中數學課程的總目標是:使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下:
1.知識
獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.情感態度與價值觀
提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鑽研精神和科學態度。
具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辨證唯物主義和歷史唯物主義世界觀。
3.能力
提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
課程具體目標中的知識、情感態度與價值觀、能力三個維度在課程實施過程中是一個有機的整體。
模塊簡介
高中數學課程包括五個必修模塊,每個模塊2學分、36學時。選修課程由系列1,系列2,系列3,系列4組成。系列1包括2個模塊,每個模塊2學分、36學時;系列2則是為希望在理工、經濟等方面發展的學生設置的,包括3個模塊,每個模塊2學分、36學時;系列3由6個專題組成,每個專題1學分、18學時;系列4由10個專題組成,每個專題1學分、18學時。
模塊
必修
模塊
必修1:
集合、函數概念與基本初等函數
集合論是得國數學家康托在19世紀末創立的,集合語言是現代數學的基本語言。使用集合語言,可以簡潔、准確地表達數學的一些內容。高中數學課程只將集合作為一種語言來學習,學生將學會使用最基本的集合語言表示有關的數學對象,發展運用數學語言進行交流的能力。
函數是描述客觀世界變化規律的重要數學模型。高中階段不僅把函數看成變數之間的依賴關系,同時還用集合與對應的語言刻畫函數,函數的思想方法將貫穿高中數學課程的始終。學生將學習指數函數、對數函數等具體的基本初等函數,結合實際問題,感受運用函數概念建立模型的過程和方法,體會函數在數學和其他學科中的重要性,初步運用函數思想理解和處理現實生活和社會中的簡單問題。學生還將學習利用函數的性質求方程的近似解,體會函數與方程的有機聯系。
必修2:
立體幾何初步、平面解析幾何初步
幾何學是研究現實世界中物體的形狀、大小與位置關系的數學學科。人們通常採用直觀感知、操作確認、思維論證、度量計算等方法認識和探索幾何圖形及其性質。三維空間是人類生存的現實空間,認識空間圖形,培養和發展學生的空間想像能力、推理論證能力、運用圖形語言進行交流的能力以及幾何直觀能力,是高中階段數學必修系列課程的基本要求。
解析幾何是17世紀數學發展的重要成果之一,其本質是用代數方法研究圖形的幾何性質,體現了數形結合的重要數學思想。在本模塊中,學生將在平面直角坐標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互位置關系,並了解空間直角坐標系。體會數形結合的思想,初步形成用代數方法解解決幾何問題的能力。
必修3:
演算法初步、統計、概率
演算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,演算法在科學技術、社會發展中發揮著越來越大的作用,並日益融入社會生活的許多方面,演算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的演算法思想。在本模塊中,學生將在義務教育階段初步感受演算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會演算法的基本思想以及演算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。
統計是研究如何合理收集、整理、分析數據的學科,它可以為人們制定決策提供依據。隨機現象在日常生活中隨處可見,概率是研究隨機現象規律的學科,它為人們認識客觀世界提供了重要的思維模式和解決問題的方法,同時為統計學的發展提供了理論基礎。在本模塊中,學生將在義務教育階段學習統計與概率的基礎上,通過實際問題情境,學習隨機抽樣、樣本估計總體、線性回歸的基本方法,體會有樣本估計總體及其特徵的思想;通過解決實際問題,較為系統地經歷數據收集與處理的全過程,體會統計思維與確定性思維的差異。學生將結合具體實例,學習概率的某些基本性質和簡單的概率模型,加深對隨機現象的理解,能通過實驗、計算器(機)模擬估計簡單隨機事件發生的概率。
必修4:
三角函數、平面上的向量、三角恆等變換
三角函數是基本初等函數,它是描述周期現象的重要數學模型,在數學和其他領域中具有重要的作用。在本模塊中,學生將通過實例,學習三角函數及其基本性質,體會三角函數在解決具有周期變化規律的問題中的作用。
向量是近代數學中重要和基本的數學概念之一,它是溝通代數、幾何與三角函數的一種工具,有著極其豐富的實際背景。在本模塊中,學生將了解向量豐富的實際背景,理解平面向量及其運算的意義。能用向量語言和方法表述和解決數學和物理學中的一些問題,發展運算能力和解決實際問題的能力。
三角恆等變換在數學中有一定的作用,同時有利於發展學生的推理能力和運算能力。在本模塊中,學生將運用向量的方法推導基本的三角恆等變換公式,由此出發導出其他的三角恆等變換公式,並能運用這些公式進行簡單的恆等變換
必修5:
解三角形、數列、不等式
學生將在已有知識的基礎上,通過對任意三角形邊角關系的探究,發現並掌握三角形中的邊長與角度之間的數量關系,並認識到運用它們可以解決一些測量和幾何計算有關的實際問題。
數列作為一種特殊的函數,是反映自然規律的基本數學模型。在本模塊中,學生將通過對日常生活中大量實際問題的分析,建立等差數列和等比數列這兩種數列模型,探索並掌握它們的一些基本數量關系,感受這兩種數列模型的廣泛應用,並利用它們解決一些實際問題。
不等關系與相等關系都是客觀事物的基本數量關系,是數學研究的重要內容。建立不等觀念、處理不等關系與處理等量問題是同樣重要的。在本模塊中,學生將通過具體情境,感受在現實世界和日常生活中存在著大量的不等關系,理解不等式(組)對於刻畫不等關系的意義和價值;掌握求解一元二次不等式的基本方法,並能解決一些實際問題;能用二元一次不等式組表示平面區域,並嘗試解決一些簡單的二元線性規劃問題;認識基本不等式及其簡單應用;體會不等式、方程及函數之間的聯系。
選修模塊
選修1-1:
常用邏輯用語、圓錐曲線與方程、導數及其應用
正確地使用邏輯用語是現代社會公民應該具備的基本素質無論是進行思考、交流,還是從事各項工作,都需要正確地運用邏輯用語表達自己的思想。在本模塊中,學生將在義務教育階段的基礎上,學習常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語准確地表達數學內容,更好地進行交流。
在必修課程學習平面解析幾何初步的基礎上,在本模塊中,學生將學習圓錐曲線與方程,了解圓錐曲線與二次方程的關系,掌握圓錐曲線的基本幾何性質,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用,進一步體會數形結合的思想。
微積分的創立是數學發展中的里程碑,它的發展及廣泛應用開創了向近代數學過渡的新時期,它為研究變數與函數提供了重要的方法和手段。導數的概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。在本模塊中,學生將通過大量實例,經歷由平均變化率到瞬時變化率刻畫現實問題的過程,理解導數的含義,體會導數的思想及其內涵;應用導數探索函數的單調、極值等性質及其在實際中的應用,感受導數在解決數學問題和實際問題中的作用,體會微積分的產生對人類文化發展的價值。
選修1-2:
統計案例、推理與證明、數系擴充及復數的引入、框圖
學生將在必修課程學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題的基本思想,認識統計方法在決策中的作用。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理。歸納、類比是合情推理常用的思維方法。培養和提高學生的演繹推理或邏輯證明的能力是高中數學課程的重要目標。合情推理和演繹推理之間聯系緊密、相輔相成。證明通常包括邏輯證明和實驗、實驗證明,數學結論的正確性必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。在本模塊中,學生將通過對已學知識的回顧,進一步體會合情推理、演繹推理以及二者之間的聯系與差異;體會數學證明的特點,了解數學證明的基本方法,包括直接證明的方法(如分析法、綜合法)和間接證明的方法(如反證法);感受邏輯證明在數學以及日常生活中的作用,養成言之有理、論證有據的習慣。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生、發展的客觀需求,復數的引入是中學階段數系的又一次擴充。在本模塊中,學生將在問題情境中了解數系擴充的過程以及引入復數的必要性,學習復數的一些基本知識、體會人類理性思維在數系擴充中的作用。
框圖是表示一個系統各部分和各環節之間的圖示,它的作用在於能夠清晰地表達比較復雜的系統各部分之間的關系。框圖已經廣泛應用於演算法、計算機程序設計、工業流程的表述、設計方案的比較等方面,也是表示數學計算與證明過程中主要邏輯步驟的工具,並將成為日常生活和各門學科中進行交流的一種常用表達方式。在本模塊中,學生將學慣用「流程圖」「結構圖」等刻畫數學問題以及其他問題的解決過程;並在學習過程中,體驗用框圖表示數學問題解決過程以及事物發生、發展過程的優越性,提高抽象概括能力和邏輯思維能力,能清晰地表達和交流思想。
選修2-1:
常用邏輯用語、圓錐曲線方程、空間中的向量與立體幾何
正確地使用邏輯用語是現代社會公民應該具備的基本素質無論是進行思考、交流,還是從事各項工作,都需要正確地運用邏輯用語表達自己的思想。在本模塊中,學生將在義務教育階段的基礎上,學習常用邏輯用語,體會邏輯用語在表述和論證中的作用,利用這些邏輯用語准確地表達數學內容,更好地進行交流。
在必修階段學習平面解析幾何初步的基礎上,在本模塊中,學生將學習圓錐曲線與方程,了解圓錐曲線與二次方程的關系,掌握圓錐曲線的基本幾何性質,感受圓錐曲線在刻畫現實世界和解決實際問題中的作用。結合已學過的曲線及其方程的實例,了解曲線與方程的對應關系,進一步體會數形結合的思想。
用空間向量處理立體幾何問題,提供了新的視角。空間向量的引入,為解決三維空間中圖形的位置關系與度量問題提供了一個十分有效的工具。在本模塊中,學生將在學習平面向量的基礎上,把平面向量及其運算推廣到空間,運用空間向量解決有關直線、平面位置關系的問題,體會向量方法在研究幾何圖形中的作用,進一步發展空間想像能力和幾何直觀能力。
選修2-2:
導數及其應用、推理與證明、數系的擴充與復數的引入
微積分的創立是數學發展中的里程碑,它的發展及廣泛應用開創了向近代數學過渡的新時期,它為研究變數與函數提供了重要的方法和手段。導數的概念是微積分的核心概念之一,它有極其豐富的實際背景和廣泛的應用。在本模塊中,學生將通過大量實例,經歷由平均變化率到瞬時變化率刻畫現實問題的過程,理解導數的含義,體會導數的思想及其內涵;應用導數探索函數的單調、極值等性質及其在實際中的應用,感受導數在解決數學問題和實際問題中的作用,體會微積分的產生對人類文化發展的價值。
「推理與證明」是數學的基本思維過程,也是人們學習和生活中經常使用的思維方式。推理一般包括合情推理和演繹推理。歸納、類比是合情推理常用的思維方法。培養和提高學生的演繹推理或邏輯證明的能力是高中數學課程的重要目標。合情推理和演繹推理之間聯系緊密、相輔相成。證明通常包括邏輯證明和實驗、實驗證明,數學結論的正確性必須通過演繹推理或邏輯證明來保證,即在前提正確的基礎上,通過正確使用推理規則得出結論。在本模塊中,學生將通過對已學知識的回顧,進一步體會合情推理、演繹推理以及二者之間的聯系與差異;體會數學證明的特點,了解數學證明的基本方法,包括直接證明的方法(如分析法、綜合法)和間接證明的方法(如反證法);感受邏輯證明在數學以及日常生活中的作用,養成言之有理、論證有據的習慣。
數系擴充的過程體現了數學的發現和創造過程,同時體現了數學發生、發展的客觀需求,復數的引入是中學階段數系的又一次擴充。在本模塊中,學生將在問題情境中了解數系擴充的過程以及引入復數的必要性,學習復數的一些基本知識、體會人類理性思維在數系擴充中的作用。
選修2-3:
計數原理、統計案例、概率
記數問題是數學中的重要研究對象之一,分類加法計數原理、分步乘法計數原理是解決計數問題的最基本、最重要的方法,也稱為基本計數原理,它們為解決很多實際問題提供了思想和工具。在本模塊中,學生將學習計數基本原理、排列、組合、二項式定理及其應用,了解計數與現實生活的聯系,會解決簡單的計數問題。
學生將在必修課程學習概率的基礎上,學習某些離散型隨機變數分布列及其均值、方差等內容,初步學會利用離散型隨機變數思想描述和分析某些隨機現象的方法,並能用所學知識解決一些簡單的實際問題,進一步體會概率模型的作用及運用概率思考問題的特點,初步形成用隨機觀念觀察、分析問題的意識。
學生將在必修課程學習統計的基礎上,通過對典型案例的討論,了解和使用一些常用的統計方法,進一步體會運用統計方法解決實際問題的基本思想,認識統計方法在決策中的作用。
選修4-1:
幾何證明選講
幾何證明選講有助於培養學生的邏輯推理能力,在幾何證明的過程中,不僅是邏輯演繹的程序,它還包含著大量的觀察、探索、發現的創造性過程。本專題從復習相似圖形的性質入手,證明一些反映圓與直線關系的重要定理,並通過對圓錐曲線性質的進一步探索,提高學生空間想像能力、幾何直觀能力和運用綜合幾何方法解決問題的能力。
選修4-2:
坐標系與參數方程
坐標系是解析幾何的基礎。在坐標系中,可以用有序實數組確定點的位置,進而用方程刻畫幾何圖形。為便於用代數的方法刻畫幾何圖形或描述自然現象,需要建立不同的坐標系。極坐標系、柱坐標系、球坐標系等是與直角坐標系不同的坐標系,對於有些幾何圖形,選用這些坐標系可以使建立的方程更加簡單。
參數方程是以參變數為中介來表示曲線上點的坐標的方程,是曲線在同一坐標系下的又一種表示形式。某些曲線用參數方程表示比用普通方程表示更方便。學習參數方程有助於學生進一步體會解決問題中數學方法的靈活多變。
本專題是解析幾何初步、平面向量、三角函數等內容的綜合應用和進一步深化。極坐標系和參數方程是本專題的重點內容,對於柱坐標系、球坐標系等只作簡單了解。通過對本專題的學習,學生將掌握極坐標和參數方程的基本概念,了解曲線的多種表現形式,體會從實際問題中抽象出數學問題的過程,培養探究數學問題的興趣和能力,體會數學在實際中的應用價值,提高應用
❻ 淺析高中數學課堂如何實現知識性和趣味性的
高中數學一直是讓人覺得深奧和難懂,所以不少學生都會強制自己去進行學習數學,有不少老師甚至認為高中數學本來就是非常枯燥的,所以學好高中數學需要下一定的功夫.在教學過程中如果忽略了對學生學習興趣的培養,那麼高中數學教學的效率就會下降,所以需要因地制宜,真正提高數學課堂的趣味性,挖掘學生學習數學的興趣.
趣味性具有令人感到愉快且有吸引力的特性,如何提高課堂教學的趣味性,是決定是否激發學生學習興趣,提高課堂教學效果非常重要的手段.教育家孔子說過:知之者不如好之者,好之者不如樂之者,所以有的學生對數學是有天生的興趣,但是很多學生對數學有興趣是需要教師在課堂教學中不斷地進行培養的.
一、如何培養高中學生趣味性
如果教師的課講得很生動,那麼學生的注意力就會集中到老師的這個方面上來,他們就會學得比較輕松,如果學生在放鬆的情況下,我們只要掌握課堂教學中的方法,真正掌握好教學的發散尺寸,就會使數學課堂充滿趣味,又不能偏離課堂教學的重點.所以要打造高中數學教學全新模式,最重要的是培養學生的創造力,學生創造力的提高應該來源於創意思維能力的培養,創意是提供新穎和有價值的成果,創意思維是指在強烈的創新意識下,中學生用自己頭腦中的信息作為素材,然後發散思維,藉助天馬行空的想像和靈感,形成漸進式和突發式的模式,然後對現有的知識和信息進行重新加工.
二、增加數學課堂趣味性的方法
(一)聯系生活增加數學課堂的趣味性
生活離不開數學,如果數學與生活不能緊密相聯,那麼在數學課堂當中的教學,就要從生活中的實際問題進行入手,這樣才能真正喚起學生去體驗生活,從學生已有的知識背景出發,然後組織教學,這樣可以使學生能夠感覺到學習的內容與實際生活非常接近,所以認識數學是非常有用的.只有使學生消除數學當中的枯燥感,才能讓學生以積極、愉快的心態真正投入到學習中去,從而凸顯數學的趣味性,讓學生能夠真正進入角色.
比如在學習對稱問題的時候,我們可以舉個例子,在河流兩側有兩個村A村和B村,要在河岸邊建一個水泵廠,去連接A,B村,那麼水泵廠建在河岸的哪個地方會使得水更少?學生對於這個問題應該是非常感興趣的,所以他們會去尋找方法,使學生感覺有趣的同時,又能不脫離課本.所以,在講函數的時候,可以緊密聯系銀行存款利息當中的計算;講概率的時候,可以聯系彩票.所以,只要我們在平時的生活中不斷地去進行發現,那麼就會找到很多高中數學的知識,從而真正應用到現實生活當中.如果讓學生能帶著感興趣的問題去學習,那麼課堂就會變得非常活躍,學生就會感覺到非常有趣.
(二)改進傳統的教學模式
在數學課堂當中,老師講、學生記是傳統的教學模式,老師講完例題的時候,學生完成練習,是我們在學習生活中經常採用的方式,這樣往往會使學生的主體地位得不到真正地顯現,如果被動地接受老師的灌輸,那麼課堂就會顯得索然無味,如果我們每節課周而復始地進行學習,學生就會感覺到非常疲勞,然後失去學習數學的興趣.改進傳統的教學模式是增加學生學習的趣味性,讓學生聽得有趣,練得高興,各小組在完成任務後,派代表把結果寫到黑板上去,並小結難點和易錯點,看哪一個組學習的速度快、小結規范,這樣課堂就會有趣得多,學生的積極性也會迅速提高.學習成績好的學生,還可以當小老師,這樣的課堂自然有趣一些,學生的積極性也會大大提高.比如蘇版高中數學課本中空間幾何體,教師可以通過建房子的形式,講解課本中幾何數的立體形狀,然後結合美術的空間結構圖,讓學生明白幾何體的形狀.
(三)巧用數學趣題引入新課堂
在現在所使用的蘇版高中教材當中,為了便於讓學生能夠理解新課的作用,幾乎每一節新課都會引入新的材料,學生在預習中已經基本有所了解,如果教師在課堂教學當中再進行引用,學生就會更加容易接受.比如在講授極限概念的時候,我們可以引入龜兔賽跑的問題:我們知道兔子比烏龜跑得快,如果烏龜在兔子前面的十米,它們一起跑,你說兔子能不能追得上烏龜?
所以大家都會認為肯定能夠追上,但是我卻給了他們一個否定的答案,如果學生大惑不解,我講了一個理由,當兔子追到到烏龜的位置(離它大概有十米),烏龜跑出去大概是六米,當兔子追到六米的時候,那麼烏龜就會跑三米,當兔子跑了三米,那麼烏龜就會跑了又一段距離,如此反復地進行下去,從而引出一個極限的概念,這樣既增加了課堂當中的趣味性,學生學習數學的積極性也很快提高了,我們的課堂也會變得更加生動,活躍了課堂,提高了學生學習高中數學的積極性.
結論
數學課程內容設計需要展現新的理念,提出「要讓學生能夠親身經歷變成一個抽象的數學模型」,需要進一步讓學習的內容有利於學生主動去觀察、猜測、推動.高中數學教科書需要展現一個富有挑戰性,學生需要認真思考才能夠解決問題,教師需要針對教材內容精心設計學生的發展區,不斷地促進學生的遷移.高中數學教材的教法是教師的一門專業的必修課,所以教師需要進行深入的研究和探索.
興趣是最好的老師,求知慾和學習興趣是學習內在的動力,培養學生學習的興趣需要充分了解學生學習的實用價值,各種知識技能對於學生的生活有直接或間接的用途,所以在教學過程,教師需要通過各種例子來培養學生學習的興趣,真正促進學生能夠生動活潑、主動地進行學習,從而達到獲得知識和發展能力.