導航:首頁 > 數字科學 > 八年級上冊數學學的什麼方程式

八年級上冊數學學的什麼方程式

發布時間:2023-06-19 02:01:11

初中數學方程式有哪些

方程式是初中數學的基礎,學生們一定要扎實掌握,我整理了一些重要的方程式。

跟的判別式

b2-4ac=0,註:方程有兩個相等的實根

b2-4ac>0,註:方程有兩個不等的實根

b2-4ac<0,註:方程沒有實根,有共軛復數根

周長公式

初中周長公式常見的有以下幾類:

長方形周長=(長+寬)×2,C=2(a+b)

正方形周長=邊長×4,C=4a

圓周長=直徑×圓周率,C=2πr

面積公式

初中幾何面積公式常見的有以下幾類:

長方形面積=長×寬,S=ab

正方形面積=邊長×邊長,S=a²

三角形面積=底×高÷2,S=ah/2

平行四邊形面積=底×高,S=ah

梯形面積=(上底+下底)×高÷2,S=1/2(a+b)h

三角函數公式

1、兩角和公式

sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB),tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA),ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

2、倍角公式

tan2A=2tanA/(1-tan2A),ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

3、半形公式

sin(A/2)=√((1-cosA)/2),ain(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2),cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)),tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)),ctg(A/2)=-√((1+cosA)/((1-cosA))

4、和差化積

2sinAcosB=sin(A+B)+sin(A-B),2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B),-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2,cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB,tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB,-ctgA+ctgBsin(A+B)/sinAsinB

以上是我整理的初中數學公式,希望能幫到你。

② 初中數學課程都有哪幾種方程式

一元一次方程(貌似是小學學的),二元一次方程,二元一次方程組,一元二次方程,一元二次方程組.

我現在是初三以前的記不太清..到現在大概是這么些了..應該下個學期還有一課的..

正比例函數和反比例函數算不算啊?還有拋物線..

③ 初二數學上冊知識點

初二數學上冊知識點 篇1

(一)運用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。

③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

(五)分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

全等三角形的性質:全等三角形對應邊相等、對應角相等。

全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。

角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等

角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.

(六)提公因式法

1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.

2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:

1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於

一次項的系數.

2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:

①列出常數項分解成兩個因數的積各種可能情況;

②嘗試其中的哪兩個因數的和恰好等於一次項系數.

3.將原多項式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.

6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.

(八)分數的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.

2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.

3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據:分式的基本性質.

5.通分的關鍵:確定幾個分式的公分母.

通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.

6.類比分數的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.

10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.

12.作為最後結果,如果是分式則應該是最簡分式.

(九)含有字母系數的一元一次方程

1.含有字母系數的一元一次方程

引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)

在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。

含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零

元一次方程

1.二元一次方程的定義含有兩個未知數,並且未知項的次數是1,系數不是O,這樣的整式方程,叫做二元一次方程.

二元一次方程指的是有兩個未知數的,而且未知數的質數都是1的方程式。由二元一次方程衍生出了二元一次方程組、二元一次方程的解等方面的知識,一般來說,解二元一次方程都需要把方程中的未知數的個數減少,然後再解,它的方程式是X-Y=1。

2.二元一次方程的一般形式ax+by=c(其中x、y少是未知數,a、b、c是字母已知數,且ab≠O).

3.判斷一個方程是二元一次方程,它必須同時滿足下列四個條件

(l)含有兩個未知數;

(2)未知項的次數都是1;

(3)未知項的系數都不是仇

(4)等號兩邊的代數式是整式,即方程是整式方程.

二元一次方程解題技巧:

每個人初學二元一次方程的時候,總是會覺得十分難解的,但是只要你掌握了解題技巧,自然而然就能解開。首先要想解開一個二元一次方程,就應該是解開二元一次方程組,第一步做的就是把第一個和第二個方程組合並,然後把需要解開的項移到一旁,然後合並同類項,最後就可以將解得的一個未知數帶入原先的方程中,就可以得知兩個未知數的值。

通常求一個二元一次方程解的方法是:用含有一個未知數的代數式表示另一個未知數,如3x-x/2=7變形為y=2(3x-7),給出二的一個值,就可以求出少的對應值,這樣就得到了一個方程的解。適合一個二元一次方程的每一對未知數的值叫做二元一次方程的一個解.由於任何一個二元一次方程,讓其中一個未知數取任意一個值,都可以求出與其對應的另一個未知數的值,因此,任何一個二元一次方程都有無數多個解.但若對未知數的取值附加某些條件限制時,方程的解可能只有有限個.

初二數學上冊知識點 篇2

第一章勾股定理

定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等於斜邊的平方。

判定:如果三角形的三邊長a,b,c滿足a +b = c,那麼這個三角形是直角三角形。

定義:滿足a +b =c的三個正整數,稱為勾股數。

第二章實數

定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數

(有理數總可以用有限小數或無限循環小數表示)

一般地,如果一個正數x的平方等於a,那麼這個正數x就叫做a的算術平方根。

特別地,我們規定0的算術平方根是0。

一般地,如果一個數x的平方等於a,那麼這個數x就叫做a的平方根(也叫二次方根)

一個正數有兩個平方根;0隻有一個平方根,它是0本身;負數沒有平方根。

求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。

一般地,如果一個數x的立方等於a,那麼這個數x就叫做a的立方根(也叫做三次方根)。

正數的立方根是正數;0的立方根是0;負數的立方根是負數。

求一個數a的立方根的運算,叫做開立方,其中a叫做被開方數。

有理數和無理數統稱為實數,即實數可以分為有理數和無理數。

每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都表示一個實數。即實數和數軸上的點是一一對應的。

在數軸上,右邊的點表示的數比左邊的點表示的數大。

第三章圖形的平移與旋轉

定義:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移不改變圖形的形狀和大小。

經過平移,對應點所連的線段平行也相等;對應線段平行且相等,對應角相等。

在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱旋轉中心,轉動的角稱為旋轉角。旋轉不改變圖形的大小和形狀。

任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

第四章、三角形

一、知識框架:

二、知識概念:

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2.三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。

5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

9.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的'外角。

10.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

11.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。

12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。

鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。

13.公式與性質:

⑴三角形的內角和:三角形的內角和為180°

⑵三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

⑶多邊形內角和公式:邊形的內角和等於·180°

⑷多邊形的外角和:多邊形的外角和為360°。

⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線。

第五章:軸對稱

1.基本概念:

⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。

⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線對稱。

⑶線段的垂直平分線:經過線段中點並且垂直於這條線段的直線,叫做這條線段的垂直平分線。

⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。

⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。

2.基本性質:

⑴對稱的性質:

①不管是軸對稱圖形還是兩個圖形關於某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線。

②對稱的圖形都全等。

⑵線段垂直平分線的性質:

①線段垂直平分線上的點與這條線段兩個端點的距離相等。

②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上。

⑶關於坐標軸對稱的點的坐標性質

⑷等腰三角形的性質:

①等腰三角形兩腰相等。

②等腰三角形兩底角相等(等邊對等角)。

③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。

④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

⑸等邊三角形的性質:

①等邊三角形三邊都相等。

②等邊三角形三個內角都相等,都等於60°

③等邊三角形每條邊上都存在三線合一。

④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條)。

3.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的三角形是等腰三角形。

②如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)。

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形。

②三個角都相等的三角形是等邊三角形。

③有一個角是60°的等腰三角形是等邊三角形。

4.基本方法:

⑴做已知直線的垂線:

⑵做已知線段的垂直平分線:

⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線。

⑷作已知圖形關於某直線的對稱圖形:

⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短。

初二數學上冊知識點 篇3

一次函數

(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數;

(2)正比例函數圖像特徵:一些過原點的直線;

(3)圖像性質:

①當k>0時,函數y=kx的圖像經過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當k<0時,函數y=kx的圖像經過第二、四象限,從左向右下降,即隨著x的增大y反而減小;

(4)求正比例函數的解析式:已知一個非原點即可;

(5)畫正比例函數圖像:經過原點和點(1,k);(或另外一個非原點)

(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數;

(7)正比例函數是一種特殊的一次函數;(因為當b=0時,y=kx+b即為y=kx)

(8)一次函數圖像特徵:一些直線;

(9)性質:

①y=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當b>0,向上平移;當b<0,向下平移)

②當k>0時,直線y=kx+b由左至右上升,即y隨著x的增大而增大;

③當k<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減小;

④當b>0時,直線y=kx+b與y軸正半軸有交點為(0,b);

⑤當b<0時,直線y=kx+b與y軸負半軸有交點為(0,b);

(10)求一次函數的解析式:即要求k與b的值;

(11)畫一次函數的圖像:已知兩點;

用函數觀點看方程(組)與不等式

(1)解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變數的值;從圖像上看,這相當於已知直線y=kx+b,確定它與x軸交點的橫坐標的值;

(2)解一元一次不等式可以看作:當一次函數值大(小)於0時,求自變數相應的取值范圍;

(3)每個二元一次方程都對應一個一元一次函數,於是也對應一條直線;

(4)一般地,每個二元一次方程組都對應兩個一次函數,於是也對應兩條直線。從「數」的角度看,解方程組相當於考慮自變數為何值時兩個函數的值相等,以及這個函數值是何值;從「形」的角度看,解方程組相當於確定兩條直線交點的坐標;

④ 八年級上冊數學分式方程是什麼

八年級上冊數學分式方程知識點如下。

1、分式方程:分母里含有未知數的方程叫做分式方程;注意:以前學過的,分母里不含未知數的方程是整式方程。

2、分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數的代數式,所以可能產生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數的代數式,因為可能丟根。

3、分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數的值可能是原方程的增根。

4、分式方程的應用:列分式方程解應用題與列整式方程解應用題的方法一樣,但需要增加驗增根的程序。

⑤ 八年級上冊數學分式方程有哪些

八年級上冊數學分式方程類型有:

1、最簡公分母,將分式方程化為整式方程。

2、按解整式方程的步驟(移項,合並同類項,系數化為1)求出未知數的值。

3、驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根)。

注意事項

(1)注意去分母時,不要漏乘整式項。

(2)増根是分式方程去分母後化成的整式方程的根,但不是原分式方程的根。

(3)増根使最簡公分母等於0。

(4)分式方程中,如果x為分母,則x應不等於0。

在列分式方程解應用題時,不僅要檢驗所得解的是否滿足方程式,還要檢驗是否符合題意。

⑥ 初中數學的方程有哪些

初中數學的方程有一元一次方程,分式方程,二元一次方程,二元一次方程組,三元一次方程組,絕對值方程,一元二次方程等等,這些基本上都涉及到了,不過重點在分式方程跟一元二次方程的解法。

閱讀全文

與八年級上冊數學學的什麼方程式相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:733
乙酸乙酯化學式怎麼算 瀏覽:1396
沈陽初中的數學是什麼版本的 瀏覽:1341
華為手機家人共享如何查看地理位置 瀏覽:1034
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:876
數學c什麼意思是什麼意思是什麼 瀏覽:1398
中考初中地理如何補 瀏覽:1288
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:692
數學奧數卡怎麼辦 瀏覽:1378
如何回答地理是什麼 瀏覽:1012
win7如何刪除電腦文件瀏覽歷史 瀏覽:1045
大學物理實驗干什麼用的到 瀏覽:1476
二年級上冊數學框框怎麼填 瀏覽:1689
西安瑞禧生物科技有限公司怎麼樣 瀏覽:942
武大的分析化學怎麼樣 瀏覽:1240
ige電化學發光偏高怎麼辦 瀏覽:1329
學而思初中英語和語文怎麼樣 瀏覽:1639
下列哪個水飛薊素化學結構 瀏覽:1417
化學理學哪些專業好 瀏覽:1478
數學中的棱的意思是什麼 瀏覽:1048