導航:首頁 > 數字科學 > 為什麼高中數學第一章第一節是集合

為什麼高中數學第一章第一節是集合

發布時間:2023-06-27 03:40:10

❶ 高中數學第一章 集合知識詳細內容

集合
集合具有某種特定性質的事物的總體。 這里的「事物」可以是人,物品,也可以是數學元素。例如: 1、分散的人或事物聚集到一起;使聚集:緊急~。 2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。 3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor, G.F.P.,1845年—1918年,德國數學家先驅,是集合論的創始者,目前集合論的基本思想已經滲透到現代數學的所有領域。
集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下「定義」。 集合
集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
元素與集合的關系
元素與集合的關系有「屬於」與「不屬於」兩種。
集合與集合之間的關系
某些指定的對象集在一起就成為一個集合集合符號
,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。 『說明一下:如果集合 A 的所有元素同時都是集合 B 的元素,則 A 稱作是 B 的子集,寫作 A ? B。若 A 是 B 的子集,且 A 不等於 B,則 A 稱作是 B 的真子集,一般寫作 A ? B。 中學教材課本里將 ? 符號下加了一個 ≠ 符號(如右圖), 不要混淆,考試時還是要以課本為准。 所有男人的集合是所有人的集合的真子集。』
集合的幾種運演算法則
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B} 交集: 以屬於A且屬於B的元 差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B} 例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那麼因為A和B中都有1,5,所以A∩B={1,5} 。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那麼說A∪B={1,2,3,5}。 圖中的陰影部分就是A∩B。 有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個。結果是3,5,7每項減 集合
1再相乘。48個。 對稱差集: 設A,B 為集合,A與B的對稱差集AÅB定義為: AÅB=(A-B)∪(B-A) 例如:A={a,b,c},B={b,d},則AÅB={a,c,d} 對稱差運算的另一種定義是: AÅB=(A∪B)-(A∩B) 無限集: 定義:集合里含有無限個元素的集合叫做無限集 有限集:令N*是正整數的全體,且N_n={1,2,3,……,n},如果存在一個正整數n,使得集合A與N_n一一對應,那麼A叫做有限集合。 差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)。記作:A\B={x│x∈A,x不屬於B}。 注:空集包含於任何集合,但不能說「空集屬於任何集合」.補集:是從差集中引出的概念,指屬於全集U不屬於集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬於A} 空集也被認為是有限集合。 例如,全集U={1,2,3,4,5} 而A={1,2,5} 那麼全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。 在信息技術當中,常常把CuA寫成~A。
集合元素的性質
1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。這個性質主要用於判斷一個集合是否能形成集合。 2.獨立性:集合中的元素的個數、集合本身的個數必須為自然數。 3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。 4.無序性:{a,b,c}{c,b,a}是同一個集合。 5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A 中所有的元素都要符合x<2,這就是集合純粹性。 6.完備性:仍用上面的例子,所有符合x<2的數都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應的。
集合有以下性質
若A包含於B,則A∩B=A,A∪B=B
集合的表示方法
集合常用大寫拉丁字母來表示,如:A,B,C…而對於集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當於集合的名字,沒有任何實際的意義。 將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括弧括起來的,括弧內部是具有某種共同性質的數學元素。
常用的有列舉法和描述法。 1.列舉法﹕常用於表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括弧內﹐這種表示集合的方法叫做列舉法。{1,2,3,……} 2.描述法﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π} 3.圖示法(Venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。 集合
4.自然語言 常用數集的符號: (1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N;不包括0的自然數集合,記作N* (2)非負整數集內排除0的集,也稱正整數集,記作Z+;負整數集內也排除0的集,稱負整數集,記作Z- (3)全體整數的集合通常稱作整數集,記作Z (4)全體有理數的集合通常簡稱有理數集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質}(正負有理數集合分別記作Q+Q-) (5)全體實數的集合通常簡稱實數集,記作R(正實數集合記作R+;負實數記作R-) (6)復數集合計作C 集合的運算: 集合交換律 A∩B=B∩A A∪B=B∪A 集合結合律 (A∩B)∩C=A∩(B∩C) (A∪B)∪C=A∪(B∪C) 集合分配律 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C) 集合德.摩根律 集合
Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 集合「容斥原理」 在研究集合時,會遇到有關集合中的元素個數問題,我們把有限集合A的元素個數記為card(A)。例如A={a,b,c},則card(A)=3 card(A∪B)=card(A)+card(B)-card(A∩B) card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C) 1885年德國數學家,集合論創始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。 集合吸收律 A∪(A∩B)=A A∩(A∪B)=A 集合求補律 A∪CuA=U A∩CuA=Φ 設A為集合,把A的全部子集構成的集合叫做A的冪集 德摩根律 A-(BUC)=(A-B)∩(A-C) A-(B∩C)=(A-B)U(A-C) ~(BUC)=~B∩~C ~(B∩C)=~BU~C ~Φ=E ~E=Φ 特殊集合的表示 復數集 C 實數集 R 正實數集 R+ 負實數集 R- 整數集 Z 正整數集 Z+ 負整數集 Z- 有理數集 Q 正有理數集 Q+ 負有理數集 Q- 不含0的有理數集 Q* 自然數集 N 不含0自然數集 N*

❷ 什麼是集合數學高一

集合一般是在高中一年級的基礎數學章節。

關於集合的概念:

點、線、面等概念都是幾何中原始的、不加定義的概念,集合則是集合論中原始的、不加定義的概念。

初中代數中曾經了解「正數的集合」、「不等式解的集合」;初中幾何中也知道中垂線是「到兩定點距離相等的點的集合」等等。在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識。

教科書給出的「一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。」這句話,只是對集合概念的描述性說明。

一、注意點

1、研究一個集合,首先要看集合中的代表元素,然後再看元素的限制條件,當集合用描述法表示時,注意弄清其元素表示的意義是什麼.如本例(1)中集合B中的元素為實數,而有的是數對(點集)。

2、對於含有字母的集合,在求出字母的值後,要注意檢驗集合是否滿足互異性。

二、集合間的基本關系

集合與集合之間的關系有包含、真包含和相等.若有限集有n個元素,其子集個數是2n,真子集個數得2n-1,非空子集個數是2n-1。

閱讀全文

與為什麼高中數學第一章第一節是集合相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:733
乙酸乙酯化學式怎麼算 瀏覽:1396
沈陽初中的數學是什麼版本的 瀏覽:1341
華為手機家人共享如何查看地理位置 瀏覽:1034
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:876
數學c什麼意思是什麼意思是什麼 瀏覽:1398
中考初中地理如何補 瀏覽:1288
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:692
數學奧數卡怎麼辦 瀏覽:1378
如何回答地理是什麼 瀏覽:1012
win7如何刪除電腦文件瀏覽歷史 瀏覽:1045
大學物理實驗干什麼用的到 瀏覽:1476
二年級上冊數學框框怎麼填 瀏覽:1689
西安瑞禧生物科技有限公司怎麼樣 瀏覽:942
武大的分析化學怎麼樣 瀏覽:1240
ige電化學發光偏高怎麼辦 瀏覽:1329
學而思初中英語和語文怎麼樣 瀏覽:1639
下列哪個水飛薊素化學結構 瀏覽:1417
化學理學哪些專業好 瀏覽:1478
數學中的棱的意思是什麼 瀏覽:1048