① 求高考數學常用巧解方法
快速准確,不擇手段。
考試中有選擇題、填空題和解答題,其中選擇填空題跟解答題的本質區別是它們是不需要寫出解答步驟的,其實命題人已經暗示了我們,選擇填空題只要你把答案做出來,無論你用什麼方法都是允許的。許多不會考試的人常犯的錯誤和大忌,就是把每一道題都當作解答題按部就班的去解答,這樣,即使你能把題目做對,但是浪費了大量不必要的時間。
其實,許多選擇填空題仔細觀察題目中的數字和選項,就可以排除一些選項,完全可以降低難度甚至直接選出正確答案,許多填空題往往有許多靈活的技巧,但由於這些技巧在解答題當中往往不適宜寫在卷面中,所以經常被我們所忽視掉了。
比如,做選擇填空題常用的巧妙方法有:排除法、數形結合、畫圖觀察、代入驗證等等方法。這些技巧和方法也是我們在平常的題目講解中要為學生灌輸和滲透的內容,我們在教學中也會逐步培養學生的這種意識。
② 數學證明題怎樣巧解
1)按照題意畫出圖形;
(2)分清命題的條件的結論,結合徒刑,在「已知」一項中寫出題設,在「求證」一項中寫出結論;
(3)在「證明」一項中,寫出全部推理過程。
1、綜合法:一般地,利用已知條件和某些數學定義、公理、定理等,經過一系列的推理論證,最後推導出所要證明的結論成立。
2、分析法:一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最後,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止。
3、反證法:一般地,假設原命題不成立,經過正確的推理,最後得出矛盾,因此說明假設錯誤,從而證明了原命題成立。
③ 數學問題(求巧妙解法)
1.第一次及格的有4個人第二次沒有及格 第二次及格的有2個人第一次沒有及格 有10個人不是兩次都及格 所以有4個人兩次都沒有及格
2.45=20+20+15-(5-x)-(5-x)-(3-x)-2x x為3個小組都參加的 為3個人
20+20+15 中把同時只參加兩個小組的人都加了兩次 吧同時參加3個小組的加了3次(樓上的方法當然是最好的 這是一般解法)
32-24-26+22-X=0等價於32-(24-22)-(25-22)-22-x=0
45-20-20-15+5+5+3-X=0等價於45-[20-(5-x)-(3-x))]-[20-(5-x)-(5-x))]-[15-(5-x)-(3-x))]-(3-x)-(5-x)-(5-x)-x=0 也就是把整個集合減去韋恩圖上的每一個小塊的和等於0
可以推廣的N個的情況 也就是總數-CN(1)個數-CN(2)個數-CN(3)個數-,,,CN(N)個數=0 化簡後也許可以得到你的結論
④ 數學中的巧妙解題方法都是怎麼想出來的
我只是在大一的時候,臨近考試,我在復習線性代數這部分的內容。雖然我不聰明,也不是超級擅長數學,但很樂意分享我的感覺。
許多問題對我來說並不容易。畢竟,積分是導數的倒數,所以最直接的解是很困難的。我的解決方法是使用積分公式和規則。我不會說,我要做的是替換,分部積分,我要取三個積分。
但有時候,做題就像要命,怎麼做都做不出來,請教別人,別人講的自己不一定能聽得懂,也不一定適應自己,這個時候就需要放下這道題了,因為無論如何你都做不出來了,不如去干別的事,放鬆一下心情,換個腦子,類似於聽聽音樂或者出去走走。
有時候就會是靈感凸先,你就突然會做這道題了。
所以不要為難自己,能做出來就做,盡力就好,相信自己可以的。加油!
⑤ 怎樣巧解數學題
怎樣學好數學之一
1、學數學和學其他課一樣,上課要注意聽講,上課或下課要預習和復習,把每個知識點學透徹.但各門課程都有不同點:比如語文課今天我沒上,明天上完課再補也可以,而數學是一環套一環的,比如:學小數加減混合運算,如果不先學小數加法和減法就不會,所以每個知識點一定要學透徹。
2、同學們最怕考試做錯題,做錯了就要分析,總結。我總結了一下丟分的四種情況:一種是會做,但粗心,做錯了。第二種是一時想不出怎麼做,事後就會做了。第三種是時間不夠,多給一點時間思考,也許就會做了。第四種是絕對做不出來,讓你坐在那裡一萬年,你也做不出來。解決方法有這樣幾點:一,今後要細心,千萬要細心。二,今後要多做多練,所謂「熟讀唐詩三百首,不會作詩也會吟」。三,要會用時間!要快!但是,快,容易出錯!怎麼才能快?只有一條路:多練!第四種最可怕!這裡面有兩種情況。一種是你不會做,是因為你沒有學好,做不出來;另一種情況是,你學好了,但缺少舉一反三和綜合能力,做不出來。大部分同學問題出在第二種。老師出這樣的題目是有道理的。大家絕對不會做的題目,老師是不會出的,老師是在考大家舉一反三,綜合能力。你腦子要多繞幾個彎子,多想幾個為什麼,就能做出來。
3、有這么一句話:興趣是最好的老師。大家先把喜愛數學的興趣培養出來,就能學好。
如何學好數學之二
學好數學的方法其實跟讀其他科目沒太大差別,流程上可區分為六個步驟:
1. 預習
2. 專心聽講
3. 課後練習
4. 測驗
5. 偵錯、補強
6. 回想
以下就每一個步驟提出應注意事項,提供同學們參考。
1. 預 習 : 在課前把老師即將教授的單元內容瀏覽一次,並留意不了解的部份。
2. 專心聽講:
(1)新的課程開始有很多新的名詞定義或新的觀念想法,老師的說明講解絕對比同學們自己看書更清楚,務必用心聽,切勿自作聰明而自誤。 若老師講到你早先預習時不了解的那部份,你就要特別注意。 有些同學聽老師講解的內容較簡單,便以為他全會了,然後分心去做別的事,殊不知漏聽了最精彩最重要的幾句話,那幾句話或許便是日後測驗時答錯的關鍵所在。
(2)上課時一面聽講就要一面把重點背下來。定義、定理、公式等重點,上課時就要用心記憶,如此,當老師舉例時才聽得懂老師要闡述的要義。
待回家後只需花很短的時間,便能將今日所教的課程復習完畢。事半而功倍。只可惜大多數同學上課像看電影一般,輕松地欣賞老師表演,下了課什麼都不記得,白白浪費一節課,真可惜。
3. 課後練習 :
(1) 整理重點
有數學課的當天晚上,要把當天教的內容整理完畢,定義、定理、公式該背的一定要背熟,有些同學以為數學著重推理,不必死背,所以什麼都不背,這觀念並不正確。一般所謂不死背,指的是不死背解法,但是基本的定義、定理、公式是我們解題的工具,沒有記住這些,解題時將不能活用他們,好比醫師若不將所有的醫學知識、用葯知識熟記心中,如何在第一時間救人。很多同學數學考不好,就是沒有把定義認識清楚,也沒有把一些重要定理、公式」完整地〃背熟。
(2) 適當練習
重點整理完後,要適當練習。先將老師上課時講解過的例題做一次,然後做課本習題,行有餘力,再做參考書或任課老師所發的補充試題。遇有難題一時解不出,可先略過,以免浪費時間,待閑暇時再作挑戰,若仍解不出再與同學或老師討論。
(3) 練習時一定要親自動手演算。很多同學常會在考試時解題解到一半,就接不下去,分析其原因就是他做練習時是用看的,很多關鍵步驟忽略掉了。
4. 測驗 :
(1) 考前要把考試范圍內的重點再整理一次,老師特別提示的重要題型一定要注意。
(2) 考試時,會做的題目一定要做對,常計算錯誤的同學,盡量把計算速度放慢, 移項以及加減乘除都要小心處理,少使用「心算」 。
(3) 考試時,我們的目的是要得高分,而不是作學術研究,所以遇到較難的題目不要 硬幹,可先跳過,等到試卷中會做的題目都做完後,再利用剩下的時間挑戰難題,如此便能將實力完全表現出來,達到最完美的演出。
(4) 考試時,容易緊張的同學,有兩個可能的原因:
a. 准備不夠充分,以致缺乏信心。這種人要加強試前的准備。
b. 對得分預期太高,萬一遇到幾個難題解不出來,心思不能集中,造成分數更低。這種人必須調整心態,不要預期太高。
5. 偵錯、補強 :
測驗後,不論分數高低,要將做錯的題目再訂正一次,務必找出錯誤處,修正觀念,如此才能將該單元學的更好。
6. 回想:
一個單元學完後,同學們要從頭到尾把整個章節的重點內容回想一遍,特別注意標題,一般而言,每個小節的標題就是該小節的主題,也是最重要的。將主題重點回想一遍,才能完整了解我們在學些什麼東西。(鄙視復制我答案的)
⑥ 怎麼快速解這類數學題要步驟
題主給出的英文題的意思是,求(0.99)^2+2(0.99)^0.5-2的標准線性近似函數並求其近似值。
該問題可以運用常用函數冪級數公式來求解,由於
(1+x)^2≈1+2x
(1+x)^0.5≈1+0.5x
所以, (0.99)^2+2(0.99)^0.5-2的標准線性近似函數為
L(X)=(1+2X)+2(1+0.5X)-2=3X+1
其近似值為
L(-0.01)=3(-0.01)+1=0.97
註:給出的答案是有錯誤的。
正確答案:
(0.99)^2+2(0.99)^0.5-2=0.97007
⑦ 初中數學巧解
沒題目嗎。。?
那隻能說 我初中的時候數學都是
簡單的靠細心
難的靠直覺(雖然有時候不會做,但求特殊情況或者代特殊值計算要方便不少)
呵呵 希望能幫到你
⑧ 高中數學巧學巧解大全怎麼樣
這本書還不錯,不過學習要不能太過死板,盡信書不如無書,所以,在你已經選擇了一半好書的優勢上,你應該充分利用這本書,高中數學主要考的是方法與技巧,如果你能夠將書中的方法都學會,你在數學解題方法與思路上一定會有所提高,解題速度也會突飛猛進,畢竟好方法是很重要的。總之,希望你能吃透這本書,讓它物超所值,讓你的數學突飛猛進。
⑨ 怎麼快速解數學題
掌握數字特性法的關鍵,是掌握一些最基本的數字特性規律。(下列規律僅限自然數內討論)
(一)奇偶運算基本法則
【基礎】奇數±奇數=偶數; 偶數±偶數=偶數;偶數±奇數=奇數;奇數±偶數=奇數。
【推論】1.任意兩個數的和如果是奇數,那麼差也是奇數;如果和是偶數,那麼差也是偶數。
2.任意兩個數的和或差是奇數,則兩數奇偶相反;和或差是偶數,則兩數奇偶相同。
(二)整除判定基本法則
1.能被2、4、8、5、25、125整除的數的數字特性能被2(或5)整除的數,末一位數字能被2(或5)整除;能被4(或 25)整除的數,末兩位數字能被4(或 25)整除; 能被8(或125)整除的數,末三位數字能被8(或125)整除;一個數被2(或5)除得的余數,就是其末一位數字被2(或5)除得的余數;一個數被4(或 25)除得的余數,就是其末兩位數字被4(或 25)除得的余數;一個數被8(或125)除得的余數,就是其末三位數字被8(或125)除得的余數。
2.能被3、9整除的數的數字特性能被3(或9)整除的數,各位數字和能被3(或9)整除。一個數被3(或9)除得的余數,就是其各位相加後被3(或9)除得的余數。
3.能被11整除的數的數字特性能被11整除的數,奇數位的和與偶數位的和之差,能被11整除。
(三)倍數關系核心判定特徵 如果a∶b=m∶n(m,n互質),則a是m的倍數;b是n的倍數。如果x= y(m,n互質),則x是m的倍數;y是n的倍數。如果a∶b=m∶n(m,n互質),則a±b應該是m±n的倍數。
【例22】(江蘇2006B-76)在招考公務員中,A、B兩崗位共有32個男生、18個女生報考。已知報考A崗位的男生數與女生數的比為5:3,報考B崗位的男生數與女生數的比為2:1,報考A崗位的女生數是( )。
A.15B.16C.12D.10 [答案]C
[解析]報考A崗位的男生數與女生數的比為5:3,所以報考A崗位的女生人數是3的倍數,排除選項B和選項D;代入A,可以發現不符合題意,所以選擇C。
【例23】(上海2004-12)下列四個數都是六位數,X是比10小的自然數,Y是零,一定能同時被2、3、5整除的數是多少?( ) A.XXXYXX B.XYXYXY C.XYYXYY D.XYYXYX [答案]B
[解析]因為這個六位數能被 2、5整除,所以末位為0,排除A、D;因為這個六位數能被3整除,這個六位數各位數字和是3的倍數,排除C,選擇B。
【例24】(山東2004-12)某次測驗有50道判斷題,每做對一題得3分,不做或做錯一題倒扣1分,某學生共得82分,問答對題數和答錯題數(包括不做)相差多少?( ) A.33 B.39 C.17 D.16 [答案]D
[解析]答對的題目+答錯的題目=50,是偶數,所以答對的題目與答錯的題目的差也應是偶數,但選項A、B、C都是奇數,所以選擇D。
【例25】(國2005一類-44、國2005二類-44)小紅把平時節省下來的全部五分硬幣先圍成一個正三角形,正好用完,後來又改圍成一個正方形,也正好用完。如果正方形的每條邊比三角形的每條邊少用5枚硬幣,則小紅所有五分硬幣的總價值是多少元?( ) A.1元B.2元C.3元D.4元 [答案]C
[解析]因為所有的硬幣可以組成三角形,所以硬幣的總數是3的倍數,所以硬幣的總價值也應該是3的倍數,結合選項,選擇C。
[注一] 很多考生還會這樣思考:「因為所有的硬幣可以組成正方形,所以硬幣的總數是4的倍數,所以硬幣的總價值也應該是4的倍數」,從而覺得答案應該選D。事實上,硬幣的總數是4的倍數,一個硬幣是五分,所以只能推出硬幣的總價值是4個五分即兩角的倍數。
[注二]本題中所指的三角形和正方形都是空心的。
【例26】(國2002A-6)1998年,甲的年齡是乙的年齡的4倍。2002年,甲的年齡是乙的年齡的3倍。問甲、乙二人2000年的年齡分別是多少歲?( ) A.34歲,12歲B.32歲,8歲C.36歲,12歲D.34歲,10歲 [答案]D
[解析]由隨著年齡的增長,年齡倍數遞減,因此甲、乙二人的年齡比在3-4之間,選擇D。
【例27】(國2002B-8)若干學生住若干房間,如果每間住4人則有20人沒地方住,如果每間住8人則有一間只有4人住,問共有多少名學生?( )。 A.30人B.34人C.40人D.44人[答案]D
[解析]由每間住4人,有20人沒地方住,所以總人數是4的倍數,排除A、B;由每間住8人,則有一間只有4人住,所以總人數不是8的倍數,排除C,選擇D。
【例28】(國2000-29)一塊金與銀的合金重250克,放在水中減輕16克。現知金在水中重量減輕1/19,銀在水中重量減輕1/10,則這塊合金中金、銀各占的克數為多少克?( ) A.100克,150克B.150克,100克C.170克,80克D.190克,60克[答案]D
[解析]現知金在水中重量減輕1/19,所以金的質量應該是19的倍數。結合選項,選擇D
【例29】(國1999-35)師徒二人負責生產一批零件,師傅完成全部工作數量的一半還多30個,徒弟完成了師傅生產數量的一半,此時還有100個沒有完成,師徒二人已經生產多少個?( ) A.320 B.160 C.480 D.580 [答案]C
[解析]徒弟完成了師傅生產數量的一半,因此師徒二人生產的零件總數是3的倍數。結合選項,選擇C。
【例30】(浙江2005-24)一隻木箱內有白色乒乓球和黃色乒乓球若干個。小明一次取出5個黃球、3個白球,這樣操作N次後,白球拿完了,黃球還剩8個;如果換一種取法:每次取出7個黃球、3個白球,這樣操作M次後,黃球拿完了,白球還剩24個。問原木箱內共有乒乓球多少個?( ) A.246個B.258個C.264個D.272個 [答案]C
[解析]每次取出7個黃球、3個白球,這樣操作M次後,黃球拿完了,白球還剩24個。因此乒乓球的總數=10M+24,個位數為4,選擇C。
【例31】(浙江2003-17)某城市共有四個區,甲區人口數是全城的,乙區的人口數是甲區的 ,丙區人口數是前兩區人口數的 ,丁區比丙區多4000人,全城共有人口多少萬?( ) A.18.6萬B.15.6萬C.21.8萬D.22.3萬 [答案]B
[解析]甲區人口數是全城的(4/13),因此全城人口是13的倍數。結合選項,選擇B。
【例32】(廣東2004下-15)小平在騎旋轉木馬時說:「在我前面騎木馬的人數的 ,加上在我後面騎木馬的人數的 ,正好是所有騎木馬的小朋友的總人數。」請問,一共有多少小朋友在騎旋轉木馬?( ) A.11 B.12 C.13 D.14 [答案]C
[解析]因為坐的是旋轉木馬,所以小平前面的人、後面的人都是除小平外的所有小朋友。而除小明外人數既是3的倍數,又是4的倍數。結合選項,選擇C。
【例33】(廣東2005上-11)甲、乙、丙、丁四人為地震災區捐款,甲捐款數是另外三人捐款總數的一半,乙捐款數是另外三人捐款總數的 ,丙捐款數是另外三人捐款總數的,丁捐款169元。問四人一共捐了多少錢?( ) A.780元B.890元C.1183元D.2083元 [答案]A
[解析]甲捐款數是另外三人捐款總數的一半,知捐款總額是3的倍數;乙捐款數是另外三人捐款總數的 ,知捐款總額是4的倍數;丙捐款數是另外三人捐款總數的,知捐款總額是5的倍數。捐款總額應該是60的倍數。結合選項,選擇A。
[注釋] 事實上,通過「捐款總額是3的倍數」即可得出答案。
【例34】(北京社招2005-11)兩個數的差是2345,兩數相除的商是8,求這兩個數之和?( ) A.2353 B.2896 C.3015 D.3456 [答案]C
[解析]兩個數的差是2345,所以這兩個數的和應該是奇數,排除B、D。兩數相除得8,說明這兩個數之和應該是9的倍數,所以答案選擇C。
【例35】(北京社招2005-13)某劇院有25排座位,後一排比前一排多2個座位,最後一排有70個座位。這個劇院共有多少個座位?( ) A.1104 B.1150 C.1170 D.1280 [答案]B
[解析]劇院的總人數,應該是25個相鄰偶數的和,必然為25的倍數,結合選項選擇B。
【例36】(北京社招2005-17)一架飛機所帶的燃料最多可以用6小時,飛機去時順風,速度為1500千米/時,回來時逆風,速度為1200千米/時,這架飛機最多飛出多少千米,就需往回飛?( ) A.2000 B.3000 C.4000 D.4500 [答案]C
[解析]逆風飛行的時間比順風飛行的時間長,逆風飛行超過3小時,順風不足3小時。飛機最遠飛行距離少於1500×3=4500千米;飛機最遠飛行距離大於1200×3=3600千米。結合選項,選擇C。
【例37】(北京社招2005-20)紅星小學組織學生排成隊步行去郊遊,每分鍾步行60米,隊尾的王老師以每分鍾步行150米的速度趕到排頭,然後立即返回隊尾,共用10分鍾。求隊伍的長度?( ) A.630米B.750米C.900米D.1500米[答案]A
[解析]王老師從隊尾趕到隊頭的相對速度為150+60=210米/分;王老師從隊頭趕到隊尾的相對速度為150-60=90米/分。因此一般情況下,隊伍的長度是210和90的倍數,結合選項,選擇A 針對數學計算,
審題
判斷問題的類型,找出問題的數學核心。拿到一個數學問題,首先要判斷它屬於哪一類問題?是函數問題,方程問題還是概率問題。它問的實質是什麼?是證明,化簡還是求值。只有這些大方向判斷正確了,在解題時才能應付自如。
篩選一些基本原則
審題結束後,在自己的腦海里要會議一下所學過的解題的基本原則,再根據題目進行選擇,選擇一個自己認為最簡單的原則進行解題。常見的原則有:
(1)模型化原則。把一個問題進一步抽象概括成一個數學模型。
(2)簡單化原則。就是把一個復雜的問題拆成幾個簡單的問題,在進行解題。
(3)等價變換原則。(也即劃歸方法)把一個未解決的問題化成一個已知的情形,保持問題的性質不變。
(4)數形結合原則。把數學問題和幾何問題巧妙的結合起來解題。
選擇適當的做題技巧。
包括因式分解、配方法、待定系數法、換元法、消元法,不等式的放大縮小法以及例舉法等等。這些方法要根據題目的要求不同靈活應用。認真檢查
做完題後一定要養成檢查的好習慣,這樣才能保證自己做題的正確率。
一套試卷有二十幾道題,有的題目還有多問。平均到每道題不夠5分鍾,時間確實是爭分奪秒。
拒統計,高考試卷通常控制在2000個印刷符號左右,若以每分鍾300個符號的速度審題,約需8分鍾,考慮到有的題要讀二遍以上,約需21-23分鍾;書寫解答主要是六道大題,約3、4個符號,有28分鍾可以完成。這樣,一共需要了40分鍾,還剩下80分鍾用於思考、草算、文字組織和復查檢驗。幾乎是百米賽跑般的緊張。
1、 平時的高考復習,必須要有速度訓練。為了給高檔題留下較多的思考時間,選擇、填空題應在1、2分鍾內解決。時間太長,即使做對了也是「潛在丟分」,因為120分鍾對150分,前面佔用時間多了,到最後幾題就沒有時間做,因此,要提高解題的策略,防止「小題大做」
2、 在細心的基礎上提高速度。高考數學的題目難度適中,一般地不會有太難的題。這就要求考生在另一方面下功夫,那就是仔細。高考數學考滿分的並不罕見,但令人吃驚的,這些滿分的同學並不是平時那些被認為是智力上出類拔萃的同學,而都是基本功扎實、認真仔細的同學。其實,細心本身就是一種能力,它需要長時間的培養,在復習階段絕不要忘記培養自己仔細的習慣。具體作法是,認真對待每一道題、每一次小考、每一次模擬考試,決不容許自己由不認真而犯下任何錯誤。一旦出錯,要總結經驗,避免再犯。在認真的基礎上就要講求速度,高考題量比較大,覆蓋面寬,沒有速度是不行的,有人曾說,如果給我一天時間,那麼高考數學卷我一定會拿滿分。其實,速度本身就是高考考核項目之一,在每一次作業、小考、模擬考試中有意識加快解題速度對後面提高答題速度有很大幫助。查錯勘誤。平時收集好自己做過的作業、試卷等,復習過程中時常拿出來看,找到出錯的地方,分析原因,吸取教訓。時間允許的話,可以制訂「錯題集錦」,把學習中出現的錯誤隨時登記注冊,寫明「病情」,查清「病因」,開好「處方」。這樣經常查錯勘誤,警鍾長鳴,才能吸取教訓,刻骨銘心,粗枝大葉的毛病也會逐漸改掉。
3、 要進一步,就是要不斷積累各種行之有效的解題方法及策略,學會從不同角度去觀察問題,去分析問題,進而解決問題。這樣在臨戰時就能入木三分,准確、迅速地把握住問題的實質,從而選擇恰當的方法和策略。