A. 怎麼學習數學
1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授
的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化
思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯
想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互
用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成
「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新
精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問
題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看
書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
a.記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
b.拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
c.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤
原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
d.熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
e.經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
f.
閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
g.
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
h.
學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。
B. 怎麼學好數學的方法
數學是一門研究數量、結構、變化以及空間模型等概念的學科。那麼,要怎樣才能學好數學呢?接下來,我就和大家分享學好數學的方法,希望對各位有幫助!
學好數學的方法一:
基礎理論學起:在學習數學前首先應該從最基礎的東西開始學習,因為數學的每一個理論或者每一個環節都是以前一個基礎理論為前提的,是環環相扣的理論鏈的關系。帶著這種觀點去學習也就不必去死記硬背一些定理、推理之類的知識了,學習起來自然就顯得更加容易了!
避免眼高手低:數學是一門理論聯系實際的學習,熟悉、理解基礎理論概念只是學好數學的前提,最終的目的還是用於實際的操作中,或者說用於咱們的日常生活中去。所以要勤於做題練習,堅決避免眼高手低的學習態度,“實踐是檢驗真理的唯一標准”,數學也不例外!
四大思維模式 :數學體系的四大思維體系:數形結合、函數思想、分類討論、方程思想。在學習數學過程中要做到已知量和未知量的有機結合,用已知數值通過函數的方式和方程的形式展現出來,在未知待定的情況下,通過分情況的方式加以討論並解析出問題的不同情況的答案!
培養學習興趣:俗話說“興趣是最好的老師”,很多孩子或許天生就有對數學這方面有很大的興趣,能快樂的學習數學。如果對數學不感興趣,筆者認為也可以從以下方面加以培養:激發孩子求知慾;增強孩子的自信心;啟發孩子的創造力;引導孩子思維多元化。
探索求知精神:做好以上四步,你就能輕輕鬆鬆的學好數學了。如何由“好”到“精”呢?這就需要探索求知精神了。每個人對數學知識的求知慾都是不同的,在學習肯定會遇到很多困難,當你對困難的求知慾超過別人的時候,你在精神上就超過了對方,這是一種學習數學的境界!
勤奮成就人才:每一個成功都是三分靠的上天“註定”,而七分靠的還是“打拚”。即使再有頭腦,再有數學天賦的人,如果一味的在學習中懶惰,在數學方面也不會有很大的作為;而一些即使平平的人,在勤奮的督促下也能做到一番作為。勤奮是成功的階梯!
學好數學的方法二:
一、重視課堂的學習效率
新知識的接受和數學能力的培養,主要是在課堂上進行,所以要特別重視課堂的學習效率,上課時要緊跟老師的思路,積極開展思維,預測下面的步驟,比較自己的解題思路與老師所講的有哪些不同。課後要及時復習,不留疑點,對不懂的地方要及時請教老師或同學,切忌不懂將懂,或將不懂的地方跳過。課後還要注重基礎知識的學習和基本技能的培養,要多記公式、定理,因為它們是學好數學的關鍵和必備條件。
二、多做習題,養成良好的解題習慣
要想學好數學,多做題是不可避免的。當然,多做題並不等於搞題海戰術。做的題目要有代表性,不能鬍子眉毛一把抓,碰到哪道題就做哪道題。有些題適合我們做,而有些題卻超出了我們的能力范圍,做這些題目只能是浪費我們寶貴的時間,不會達到任何效果。做的題要難易適中,通過做些有代表的題目,要力爭能舉一反三。數學是一門邏輯性很強的學科,需要縝密的思維,解題要有條理,在做題的過程中學會熟練運用正確的解題方法,掌握一些基本題型的解題規律。只有平時大量的訓練,見多了、做多了,自然就熟能生巧,考試的時候就會應付自如,不至於亂了陣腳。
三、調整好心態,正確對待平時的考試
大家都知道,數學是個邏輯性極強的學科,要求有清醒的頭腦,數學運算過程中的每個解題步驟都很重要,漏掉了哪個步驟都是不行的。因此,在做數學題的時候,保持一個平靜的心態是很重要。這就要求我們平時要學會善於把握自己的情緒,要能及時地調整好自己的心態,戒驕戒躁,千萬不能一遇到解不出來的題目就焦躁不安。焦躁是學習數學的大忌。
四、要正確對待平時的考試
平時的考試是對我們前階段所學知識的一個檢測,能夠幫助我們查漏補缺,發現平時還沒有掌握牢固的知識。因此,盡管分數很重要,但這不應該是我們關注的焦點。對一個高三的學生來說,學會分析試卷,從考試中找到自己學習中的漏洞才是至關重要的。所以不能一味地去計較分數的高低,更不能因為一次考試分數得低了,就灰心喪氣,就放棄對數學的學習。當然也不能因為一次考試分數考高了些,就沾沾自喜,以為自己的數學水平已經很不錯了,從而產生驕傲自滿的心理,這也不對的。
看了“怎麼學好數學的方法”的人還看:
1. 女生怎樣學好數學的方法
2. 學習數學有哪些方法與技巧
3. 學好數學的具體方法
4. 怎樣學習數學的方法
C. 學好數學的方法20條
學好數學的方法20條如下:
1、數學要求具備熟練的計算能力,所以課後還有做足一定量的練習題,只有通過做題練習才能擁有計算能力。
2、課前要做好預習,這樣上數學課時才能把不會的知識點更好的消化吸收掉。
3、數學公式一定要記熟,並且還要會推導,能舉一反三。
4、數學重在理解,在開始學習知識的時候,一定要弄懂。所以上課要認真聽講,看看老師是怎樣講解的。
14、舉一反三,舉三反一,培養數學思維的廣度和深度。簡單的說就是一題多解、多題一解訓練知識的縱橫聯系,為建立自己的數學知識體系打下基礎
15、每天要規劃出學習數學的時間,只有時間保證了,才能提高學習成績。不要自由散漫,有時間就學,沒有時間就不去碰,這要是學不好的。
16、如果數學還是學不會,可以再看一些數學學習經驗、方法及筆記,有現成的前輩總結的經驗一定要用。
17、做完題要學會總結。對於做過的題型及做錯的題目要善於進行分類總結,再遇到類似的題目要會分析,知道哪裡容易出現問題,然後盡量去避免。同時在做題和總結過程中,要學會舉一反三,抓住考點去復習。
18、數學除了一些學習上的方法和竅門外,答題時也要講究策略,不會的果斷放棄。
19、考試時合理分配答題時間,選擇題和大題按照規劃的時間作答,超出時羨巧間還算不出來就做下一道題。
20、數學有些名人小故事可以看看,很有意思,對數學學習也有一些幫助。
D. 數學學習方法有哪些
學習數學不僅要有強烈的學習願望和歲做和學習熱情,而且還要有科學的學習方法,才可能把數學學好。從分析數學學習活動可知,學習方法既受課堂教學的制約,又具有自身的一些特點。所以,我們一方面提出與課堂教學相配合的學習方法,另一方面又根據數學學習的自身特點,概括出一些特殊的學習方法。
一 預習、聽課、復習、作業的方法與數學課堂教學相適應的學習方法,就是預習、聽課、復習、作業的方法等的基本方法。
1、預習的方法
預習是乎盯上課前對即將要上的數學內容進行閱讀,了解其梗概,做到心中有數,以便於掌握聽課的主動權。預習是獨立學習的嘗試,對學習內容是否正確理解,能否把握其重點、關鍵,洞察到隱含的思想方法等,都能及時在聽課中得到檢驗、加強或矯正,有利於提高學習能力和養成自學的習慣,所以它是數學學習中的重要一環。
聽課是學習數學的主要形式。在教師的指導、啟發、幫助下學習,就可以少走彎路,減少困難,能在較短的時間內獲得大量系統的數學知識,否則事倍功半,難以提高效率。所以聽課是學好數學的關鍵
3、復習的方法
復習就是把學過的數學知識再進行學習,以達到深入理解、融會貫通、精煉概括、牢固掌握的目的。復習應與聽課緊密銜接、邊閱讀教材邊回憶聽課內容或查看課堂筆記,及時解決存在的知識缺陷與疑問。對學習的內容務求弄懂,切實理解掌握。如果有的問題經過較長時間的思索,還得不到解決,則可與同學商討或請老師解決。
4、作業的方法
數學學習往往是通過做作業,以達到對知識的鞏固、加深理解和學會運用,從而形成技能技巧,以及發展智力與數學能力。由於作業是在復習的基礎上獨立完成的,能檢查出對所學數學知識的掌胡明握程度,能考查出能力的水平,所以它對於發現存在的問題,困難,或做錯的題目較多時,往往標志著知識的理解與掌握上存在缺陷或問題,應引起警覺,需及早查明原因,予以解決。
E. 如何學習數學 6種方法來學習數學
目錄方法1:成為一名好的數學學生的關鍵1、堅持到課堂聽課。2、緊跟老師的思路學習。3、當天的作業當天完成。4、如果你需要幫助的話,也可以在課堂外尋求幫助。方法2:在學校學習數學1、從算術開始。2、繼續學習初級代數課程。3、繼續學習代數。4、學習幾何學。5、學習代數II。6、學習三角函數。7、學習一些微積分。方法3:數學基礎—掌握加法1、從"+1"開始。2、理解零。3、學習加倍。4、使用映射學習其他加法方式。5、學習10以上的加法。6、加上更大的數。方法4:數學基礎—減法原理1、從"回退1"開始。2、學習加倍減法。3、熟記結果集。4、找出缺失的數。5、熟記20以內的減法結果。6、嘗試進行不需要借位的2位數減去1位數的練習。7、學習位值為帶借位的減法做好准備。8、借位減法。方法5:數學基礎—掌握乘法1、從0和1開始。2、熟記乘法表。3、練習解決1位數乘法問題。4、對2位數和1位數進行相乘。5、對2個2位數進行相乘。6、進行相乘並重組各列。任何人都能學習數學,無論是高等數學還是數學基礎。本文首先討論如何成為一名好的數學學生,並介紹數學課程的基本學習進程以及你應該在每門課中學習的基本要素。然後,本文將介紹學習數學需要掌握的基礎知識。這些內容無論是對小學生還是其他年齡段需要鞏固基礎知識的人都大有裨益。
方法1:成為一名好的數學學生的關鍵
1、堅持到課堂聽課。如果你錯過了一堂課,那麼你只能通過你的同學或課本才能學習到相關的概念了。通過朋友或者從課本上學習相關的觀念,其學習效果總是比不上向老師學習。應該准時到課。事實上,提早一點到教室、打開你的筆記本放到適當的位置並准備好你的計算器,那麼當你的老師准備好開始講課時,你自己也已經進入狀態了。
只有在身體不適時才請假。如果你錯過了某一堂課,應該向同學了解老師的講課內容以及所布置的作業。
2、緊跟老師的思路學習。如果你的老師正在教室前進行解題,那麼你可以在自己的筆記本上跟著做。確保你的筆記寫得清楚且易於閱讀。不要只是簡單地記下問題。也把老師所講到的有助於你理解相關概念的內容記下來。
嘗試解決老師在課堂上提出的思考題,仔細想一想。當老師在教室中巡視學生的解題情況時,可以就你的問題向老晌襪轎師請教。
當老師在解題時應參與其中。不要等待老師提問。當你知道結果時應主動回答,當你對教學內容感到困惑時應舉手提問。
3、當天的作業當天完成。當天的作業當天完成的話,能夠加強對有關概念的理解和記憶。有時,你可能無法完成當天的家庭作業。但是你應該保證在下一次上課前完成你的作業。
4、如果你需要幫助的話,也可以在課堂外尋求幫助。在你的老師的空餘時間或者工作時間,向他或她尋求幫助。如果你的學校有數學中心的話,你也可以了解它的開放時間並前去尋求幫助。
加入一個學習小組。好的學習小組通常由4到5名不同水平的學生組成。如果你的數學屬於"C"級水平,那麼你應該加入有2或3名"A"級或"B"級學生組成的小組以便提升自己的水平。不要加入只有比你的成績還差的學生組成的小組中。
方法2:在學校學習數學
1、從算術開始。在大部分學校中,學生會在低年級期間學習算術。算術包括了基礎的加減乘除四則運算。多做練習。不斷地解決算術問題是學習基礎運算的最佳方法。找出一些能夠為你給出大量不同的數學問題的軟體。同時,進行計時練習以便提高你的速度。
你也可以在網上找出一些算術練習題並在你的手機設備上下載算術應用。
2、繼續學習初級代數課程。該課程將讓你掌握以後在解決代數問題時必需的基礎知識。學習分數和小數。你將會學習分數和小樹的加減乘除。關於分數,你將會學習如何約分以及解釋混合分數。宴肆關於小數,你需要理解位值,你將會在應用題中用上小數。
學習比率、比例和百分比。這些概念有助你進行比較。
學習基礎幾何。你將學習所有的圖形以及3D概念。你也將學習面積、周長、體積和表面積等概念以及表面積和平衡線、垂直線、角度等內容。
理解基礎統計學。好喚在初級代數課程中,你要學習的統計學知識主要包括圖表、散點圖、枝葉圖、柱狀圖等圖形化工具的應用。
學習代數基礎。這將包括各種基本概念,例如解決帶變數的簡單方程、學習分布屬性等各種屬性、畫出簡單方程的圖形以及解決不等式。
3、繼續學習代數。在代數學習的第一年中,你將學習代數所運用的基本符號。你也會學習:解決帶變數的方程和不等式。你將學習如何通過筆演算法和圖形法的方法解決這些問題。
解決實際問題。你可能會感到驚喜,你在以後將會面對的日常問題中,將需要運用解決代數應用題的能力。例如,你將運用代數方法計算你的銀行賬戶或投資中所獲得的利息。你也可以運用代數方法以你的車速為基礎計算出你將在旅途上花費的時間。
使用指數。當你開始解決多項式方程(同時包含數字和變數的表達式)時,你將需要理解如何使用指數。這也包括如何使用科學表達法。掌握指數應用後,你可以學習多項式表達式的加減乘除。
解決平方和平方根問題。當你掌握了這一方面時,你將能熟記多個完全平方數。你也將能夠計算包含有平方根的方程式。
理解函數和圖。在代數學中,你將需要學習圖形方程。你將需要學習如何計算線條的斜率、如何把方程轉換為點斜式以及如何使用斜截式計算某一線條在x軸和y軸上的截距。
解決方程組。有時,你將會得到2條均帶有x和y變數的獨立方程,而你必須為兩條方程解決求得x或y。幸運的是,你將學習到解決這類方程問題的多種方法,包括圖形法、替換法和相加法。
4、學習幾何學。在幾何學中,你將學習到線條、線段、角度和圖形的屬性。你將熟記大量的定理和推論,它們將有助你理解幾何的規則。
你將學習如何計算圓面積、如何使用畢達哥斯拉定理計算特殊三角形的角度和三邊的關系。
你將在以後的標准化考試中遇到大量的幾何問題,例如SAT、ACT和GRE。
5、學習代數II。代數II以你在代數I中所學到的概念為基礎,但增加了更復雜的主題,例如二次方程式和矩陣。
6、學習三角函數。你將學習到三角函數的有關內容:正弦、餘弦、正切等等。通過三角函數,你將學習到計算角度和線段長度的很多實用方法,這些技巧對於將要進入建築業、建築學、工程學或者測量學的人非常重要。
7、學習一些微積分。微積分聽上去令人生畏,但卻是一種極好的工具,有助我們理解我們周圍的數字和世界的行為。通過微積分你將學習到函數和極限的相關知識。你將了解到它們的性質以及接觸到一些有用的函數,包括e^x和對數函數。
你還將學習到有關的計算方法和導數的使用。通過一階導數你能夠了解到某一方程的正切線的斜率。例如,導數能讓你了解在非線性狀態下某些事物變化的比率。二階導數能夠讓你了解某一函數在特定區間是在遞增還是遞減,從而確定函數的凹度。
積分將能讓你學會如何計算曲線下的圖形面積以及體積。
高中微積分通常只會學習到序列和級數。雖然學生們還不會遇到太多級數的應用,但它們對於將要繼續學習微分方程的人是相當重要的。
方法3:數學基礎—掌握加法
1、從"+1"開始。加上1到某一個數將得到數列上下一個更大的數。例如,2 + 1 = 3。
2、理解零。任何數字加上零將等於原數,因為"零"等同於"無"。
3、學習加倍。加倍就是把兩個相同的數進行相加的問題。例如,3 + 3 = 6就是包含加倍問題的一個等式。
4、使用映射學習其他加法方式。在以下例子中,你可以通過映射學習當3加上5,2加上1時所發生的情況。請自行嘗試"加2"的問題。
5、學習10以上的加法。學習把3個數加起來得出大於10的結果。
6、加上更大的數。學習把個位上的結果進位到十位,把十位上的結果進位到百位,以此類推。進行加法時由低位開始。8 + 4 = 12,這表示你有1個10和2個1。把2寫到個位上。
把1寫到10位上。
把十位上的數加起來。
方法4:數學基礎—減法原理
1、從"回退1"開始。對一個數減去1將回退到前一個數。例如,4 - 1 = 3。
2、學習加倍減法。例如,你進行加倍加法5 + 5得到10。那麼可得到相反的等式10 - 5 = 5。如果5 + 5 = 10,則10 - 5 = 5。
如果2 + 2 = 4,則4 - 2 = 2。
3、熟記結果集。例如:3 + 1 = 4
1 + 3 = 4
4 - 1 = 3
4 - 3 = 1
4、找出缺失的數。例如,___ + 1 = 6(答案是5)。
5、熟記20以內的減法結果。
6、嘗試進行不需要借位的2位數減去1位數的練習。減去個位上的數,並減去十位上的數。
7、學習位值為帶借位的減法做好准備。32 = 3個10和2個1。
64 = 6個10和4個1。
96 = __ 個10和 __ 1。
8、借位減法。你需要進行42 - 37減法運算。你由對個位上的2 - 7減法開始。然而,這行不通!
從十位上借10並把它和個位數結合。這時你不再有4個10,你只有3個10了。現在你所具有的也不再是2個1,而是12個1了。
首先對個位進行減法:12 - 7 = 5。然後,再進行十位減法。因為3 - 3 = 0,你不再需要記下0了。最終結果為5。
方法5:數學基礎—掌握乘法
1、從0和1開始。任何數乘以1等於該數本身。任何數乘以零等於零。
2、熟記乘法表。
3、練習解決1位數乘法問題。
4、對2位數和1位數進行相乘。把右下方的數乘以右上方的數。
把右下方的數乘以左上方的數。
5、對2個2位數進行相乘。把右下方的數乘以右上方的數,然後再乘以左上方的數。
把第二行的數往左移動一個數字。
把左下方的數乘以右上方的數,然後再乘以左上方的數。
把所得的各列數字相加。
6、進行相乘並重組各列。你需要對34 x 6進行相乘。你由個位列開始(4 x 6),但無法在個位列上保留24個1。
把4個1保留在個位列上。把2移動到十位列。
把6 x 3進行相乘,得到18。把進位的2加到結果中,將得到20。
F. 數學學習方法有哪些
滿意請採納。
數學學習方法有:
1.熟悉知識點。了解知識點的概念及運用范圍。
2.多做習題。無論題目會不會寫,剛開始都建議對每一道題所考察的知識點進行分析,如果分析不出來則重新回顧一下知識點。可以自己嘗試給題目分類,也可直接用分好的題目,進而將解題方法對應分類。並做錯題本。
3.求助同學。可姿鬧以參考同學的筆記,最好是關於前面兩點的筆記。
4.求助老師。可以請老師幫忙分析錯題,找到自己的知識薄弱點,從而有針對性地模扒提高。旦冊昌也可請老師歸納提綱,幫助記憶知識點和系統整理解題方法。