Ⅰ 數學建模方法和步驟
數學建模的方法:
一、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來橡讓配推導出模型。
二、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型
三、模擬和其他方法。
1、計算機模擬:實質上是統計估計方法,等效於抽樣試驗。包括離散系統模擬和連續系統模擬。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構。
梁指3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的可能變化,人為地組成一個系統。
數學建模的步驟:
一、模型准備:了解問題的實際背景滑雹,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
二、模型假設:根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設。
三、模型構成:根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。
四、模型求解:可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法進行求解。
五、模型分析:對模型解答進行數學上的分析。
Ⅱ 數學建模的步驟
數學建模的主要步驟:
第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建
模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以
高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應
盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間
的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老
人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱
大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工
具愈簡單愈有價值。
第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,
特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計
算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作
出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差
分析,數據穩定性分析。
數學建模採用的主要方法有:
(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模
型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策
等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。
(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型
1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀
態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構
。
3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的
可能變化,人為地組成一個系統。
希望能解決您的問題。
Ⅲ 數學建模五個步驟順序
數學建模五個步驟順序如下:
第一步:根據研究對象的特點,確定研究對象屬哪類自然事物或自然現象,從而確定使用何種數學方法與建立何種數學模型。即首先確定對象與應該使用的數學模型的類別歸屬問題,是屬於「必然」類,還是「隨機」類;是「突變」類,還是「模糊」類。
第三步:抓住主要矛盾進行科學抽象。現實研究對象是復雜的,多種因素混在一起,因此,必須變復雜的研究對象為簡單和理想化的研究對象,做到這一點相當困難,關鍵是分清主次。
如何分清主次只能具體問題具體分析,但也有兩條基本原則:一是所建數學模型一定是可能的,至少可給出近似解;二是近似解的誤差不能超過實際問題所允許的誤差范圍。
第四步:對簡化後的基本量進行標定,給出它們的科學內涵。即標明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是標量,這些量的物理含義是什麼?
第五步:按數學模型求出結果。
Ⅳ 數學建模的一般步驟
數學建模的一般步驟如下:
1、 實際問題通過抽象、簡化、假設,確定變數、參數。
2、 建立數學模型並數學、數值地求解、確定參數。
3、 用實際問題的實測數據等來檢驗該數學模型。
2、 按研究對象的實際領域(或所屬學科)分:人口模型、交通模型、環境模型、生態模型、生理模型、城鎮規劃模型、水資源模型、污染模型、經濟模型、社會模型等。
Ⅳ 數學建模5步建模發的五個基本步驟是什麼
所謂提煉數學模型,就是運用科學抽象法,把復雜的研究對象轉化為數學問題,經合理簡化後,建立起揭示研究對象定量的規律性的數學關系式(或方程式)。這既是數學方法中最關鍵的一步,也是最困難的一步。提煉數學模型,一般採用以下六個步驟完成:
第一步:根據研究對象的特點,確定研究對象屬哪類自然事物或自然現象,從而確定使用何種數學方法與建立何種數學模型。即首先確定對象與應該使用的數學模型的類別歸屬問題,是屬於「必然」類,還是「隨機」類;是「突變」類,還是「模糊」類。
第二步:確定幾個基本量和基本的科學概念,用以反映研究對象的狀態。這需要根據已有的科學理論或假說及實驗信息資料的分析確定。例如在力學系統的研究中,首先確定的摹本物理量是質主(m)、速度(v)、加速度(α)、時間(t)、位矢(r)等。必須注意確定的基本量不能過多,否則未知數過多,難以簡化成可能數學模型,因此必須詵擇出實質性、關鍵性物理量才行。
第三步:抓住主要矛盾進行科學抽象。現實研究對象是復雜的,多種因素混在一起,因此,必須變復雜的研究對象為簡單和理想化的研究對象,做到這一點相當困難,關鍵是分清主次。如何分清主次只能具體問題具體分析,但也有兩條基本原則:一是所建數學模型一定是可能的,至少可給出近似解;二是近似解的誤差不能超過實際問題所允許的誤差范圍。
第四步:對簡化後的基本量進行標定,給出它們的科學內涵。即標明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是標量,這些量的物理含義是什麼?
第五步:按數學模型求出結果
Ⅵ 數學建模的步驟
數學建模關鍵是提煉數學模型,所謂提煉數學模型,就是運用科學抽象法,把復雜的研究對象轉化為數學問題,經合理簡化後,建立起揭示研究對象定量的規律性的數學關系式(或方程式)。這既是數學方法中最關鍵的一步,也是最困難的一步。提煉數學模型,一般採用以下六個步驟完成:
第一步:根據研究對象的特點,確定研究對象屬哪類自然事物或自然現象,從而確定使用何種數學方法與建立何種數學模型。即首先確定對象與應該使用的數學模型的類別歸屬問題,是屬於「必然」類,還是「隨機」類;是「突變」類,還是「模糊」類。
第二步:確定幾個基本量和基本的科學概念,用以反映研究對象的狀態。這需要根據已有的科學理論或假說及實驗信息資料的分析確定。例如在力學系統的研究中,首先確定的摹本物理量是質主(m)、速度(v)、加速度(α)、時間(t)、位矢(r)等。必須注意確定的基本量不能過多,否則未知數過多,難以簡化成可能數學模型,因此必須詵擇出實質性、關鍵性物理量才行。
第三步:抓住主要矛盾進行科學抽象。現實研究對象是復雜的,多種因素混在一起,因此,必須變復雜的研究對象為簡單和理想化的研究對象,做到這一點相當困難,關鍵是分清主次。如何分清主次只能具體問題具體分析,但也有兩條基本原則:一是所建數學模型一定是可能的,至少可給出近似解;二是近似解的誤差不能超過實際問題所允許的誤差范圍。
第四步:對簡化後的基本量進行標定,給出它們的科學內涵。即標明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是標量,這些量的物理含義是什麼?
第五步:按數學模型求出結果。
第六步:驗證數學模型。驗證時可根據情況對模型進行修正,使其符合程度更高,當然這以求原模型與實際情況基本相符為原則。