⑴ 數學中的符號是什麼
數學中的符號是:在數學中/是除號,除號是個數學符號,是一個由一根短橫線和橫線兩側的兩點構成的符號,其主要用來表示數學中的除法運算。除號可運用到數學、物理學、化學等多領域。
相關內容:
數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現代數學常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。
數量符號:
如圓周率(π,3.14159265358979),自然率(e,2.71828),斐波那契黃金分割數(φ,0.618033),虛數(i,√-1)和畢達哥拉斯常數(√2,1.41421356)等等。
運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb,lim),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。
⑵ 數學符號含義
數學符號大全及意義之運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
數學符號大全及意義之關系符號
如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b 表示「a能整除b」,而 ||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
數學符號大全及意義之結合符號
如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」=。
數學符號大全及意義之性質符號
如正號「+」,負號「-」,正負號「 」(以及與之對應使用的負正號「」)
數學符號大全及意義之省略符號
如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),
雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),
∵ 因為(一個腳站著的,站不住)
∴ 所以(兩個腳站著的,能站住)(口訣:因為站不住,所以兩個點;因為上面兩個點,所以下面兩個點)
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數 (n元素的總個數;r參與選擇的元素個數),冪 等。
數學符號大全及意義之排列組合符號
C 組合數
A (或P) 排列數
n 元素的總個數
r 參與選擇的元素個數
! 階乘,如5!=5×4×3×2×1=120,規定0!=1
!! 半階乘(又稱雙階乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840
數學符號大全及意義之離散數學符號
∀ 全稱量詞
∃存在量詞
├ 斷定符(公式在L中可證)
╞ 滿足符(公式在E上有效,公式在E上可滿
⑶ 數學符號各有什麼含義(請說出所有的符號)
(1)數量符號:如
:i,2+
i,a,x,自然對數底e,圓周率
∏。
(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(
),對數(log,lg,ln),比(∶),微分(d),積分(∫)等。
(3)關系符號:如「=」是等號,「≈」或「
」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「
」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等。
(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」
(5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」
(6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C
),冪(aM),階乘(!)等。
符號
意義
∞
無窮大
PI
圓周率
|x|
函數的絕對值
∪
集合並
∩
集合交
≥
大於等於
≤
小於等於
≡
恆等於或同餘
ln(x)
以e為底的對數
lg(x)
以10為底的對數
floor(x)
上取整函數
ceil(x)
下取整函數
x
mod
y
求余數
小數部分
x
-
floor(x)
∫f(x)δx
不定積分
∫[a:b]f(x)δx
a到b的定積分
P為真等於1否則等於0
∑[1≤k≤n]f(k)
對n進行求和,可以拓廣至很多情況
如:∑[n
is
prime][n
<
10]f(n)
∑∑[1≤i≤j≤n]n^2
lim
f(x)
(x->?)
求極限
f(z)
f關於z的m階導函數
C(n:m)
組合數,n中取m
P(n:m)
排列數
m|n
m整除n
m⊥n
m與n互質
a
∈
A
a屬於集合A
#A
集合A中的元素個數
⑷ 數學符號的含義
↔屬於符號,表示元素與集合之間的一種從屬關系 ↕求積符號 ↖求和符號 ↚相當於除號÷ ↗算術平方根,如±2的平方是4,那麼4的算術平方根是2 ↘正比於,常見於物理學,如a↘b說明當a增加,b也增加 ↙無窮 表示一種趨向,+↙表示不斷變大的趨勢 ↛直角符號 ↚角符號 ↜絕對值符號與除號 ‖平行 刻畫兩直線的關系 ∧交符號 邏輯基本符號,表示兩個命題同時發生則命題成立 ∨並符號 邏輯基本符號,表示兩個命題有一個發生則命題成立 ∩交符號 集合基本符號,表示兩個集合同時滿足 ∪並符號 集合基本符號,表示至少滿足一個集合 ∫不定積分符號 微積分基本符號 ∬積分符號 微積分基本符號 ∭所以 ∮因為 ∯比例符號 ∰比例 ∱屬於符號 集合基本符號 刻畫兩個集合間的從屬關系 ∲約等於符號 ∳相似符號 刻畫集合圖形的基本特徵 ∲約等號 刻畫兩個關系式之間的關系 ∴不等號 兩者存在差異的地方 ∵同餘符號 數論基本符號,表示兩個整數除以同一個特定的整數余數相等,例如5=2×2+1,7=2×3+1,那麼5∵7 (mod 2) ∶不大於 關系符號 前者小於或者等於後者 ∷不小於 關系符號 前者大於或者等於後者 ∶遠小於等於 關系符號 前者遠小於後者或與後者相等 ∷遠大於等於 關系符號 前者遠大於後者或與後者相等 ∸非小於 同∷ ∹非大於 同∶ ∺圓 ∺O表示圓心為O的圓 ∻垂直 刻畫兩直線或空間間關系 ⊿三角形 ∼反三角函數 sin正弦函數 Cos餘弦函數 tan正切函數
⑸ 數學上的符號都代表什麼意思
數學集合符號都有:N、N+、Z、Q、R、C等。具體介紹如下:
1、全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N。
2、非負整數集內排除0的集,也稱正整數集,記作N+(或N*)。
3、全體整數的集合通常稱作整數集,記作Z。
4、全體有理數的集合通常簡稱有理數集,記作Q。
5、全體實數的集合通常簡稱實數集,記作R。
6、復數集合計作C。
(5)符號在數學中是什麼意思擴展閱讀:
1、集合,是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。例如全中國人的集合,它的元素就是每一個中國人。我們通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。
2、元素與集合的關系有:「屬於」與「不屬於」兩種。
3、集合的運算:
(1)集合交換律:A∩B=B∩A;A∪B=B∪A。
(2)集合結合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
⑹ 數學符號是什麼意思
數學符號*是乘號的意思。*還表示除0之外的數,例:N*表示正整數。
我們現在常用於乘法運算的符號有兩個,一個是「×」,另一個是「·」。 「×」是由1631年英國數學家奧雷特最早提出的,「·」是由英國數學家赫銳奧特首創的。
其他信息
在Microsoft Word中可以插入一般應用條件下的所有數學符號,以Word2010及2010版以上軟體為例介紹操作方法:
打開Word2010文檔窗口,單擊需要添加數學符號的公式,並將插入條游標定位到目標位置。
在「公式工具/設計」功能區的「符號」分組中,單擊「其他」按鈕打開符號面板。默認顯示的「基礎數學」符號面板。用戶可以在「基礎數學」符號面板中找到最常用的數學符號。同樣地,Alt+41420(即壓下Alt不放,依次按41420(小鍵盤),最後放開Alt 就可以打出 √。
⑺ 數學中的符號是什麼意思啊
數學集合符號如下:
1、N:非負整數集合或自然數集合{0,1,2,3,…}
2、N*或N+:正整數集合{1,2,3,…}
3、Z:整數集合{…,-1,0,1,…}
4、Q:有理數集合
5、Q+:正有理數集合
6、Q-:負有理數集合
7、R:實數集合(包括有理數和無理數)
8、R+:正實數集合
9、R-:負實數集合
10、C:復數集合
11、∅ :空集(不含有任何元素的集合)
集合基礎知識:
1、定義:一般地,我們把研究對象統稱為元素,一些元素組成的總體叫集合,也簡稱集;
2、表示方法:集合通常用大括弧{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。
3、關於集合的元素的特徵
(1)確定性:給定一個集合,那麼任何一個元素在或不在這個集合中就確定了;
(2)互異性:一個集合中的元素是互不相同的,即集合中的元素是不重復出現的;
(3)無序性:即集合中的元素無順序,可以任意排列、調換。
4、元素與集合的關系:(元素與集合的關系有「屬於」及「不屬於」兩種)
(1)若a是集合A中的元素,則稱a屬於集合A;
(2)若a不是集合A的元素,則稱a不屬於集合A。
5、集合的表示方法
(1)列舉法:把集合中的元素一一列舉出來, 並用花括弧括起來表示集合的方法叫列舉法;
(2)描述法:用集合所含元素的共同特徵表示集合的方法,稱為描述法;
(3)文氏(Venn)圖法:畫一條封閉的曲線,用它的內部來表示一個集合。
⑻ 數學符號含義 ~ 這個符號在數學里是什麼意思啊
數學符號*是乘號的意思。*還表示除0之外的數,例:N*表示正整數。
我們現在常用於乘法運算的符號有兩個,一個是「×」,另一個是「·」。 「×」是由1631年英國數學家奧雷特最早提出的,「·」是由英國數學家赫銳奧特首創的。
而德國數學家萊布尼茨則認為,「×」號與拉丁字母表示未知數的「拿雀茄X」很歲宴像,運算時容易混淆,因此加以反對。但他贊成用「·」來替代「×」。因此德國的數學書中,乘號與世界其他國家是不一樣的。
後萊布尼茨又提出用「п」符號表示相乘,但未得到認可,現在卻被用到了集合論中去。18世紀,美國數學家歐德萊認為,乘法就是一種特殊的增加,「×」是斜起來寫的「+」,用它表示相乘最合適,於是他確定用「×」表示兩數相乘,「×」就被用作乘法運算了。
(8)符號在數學中是什麼意思擴展閱讀
乘法相關歷史:
乘法口訣(也叫「九九歌」)在我國很早就已產生。遠在春秋戰國時代,九九歌就已經廣泛地被人們利用著。在當時的許多著作中,已經引用部分乘法口訣。
最初的九九歌是以「九九八十一」起到「二二如四」止,共36句口訣。
發掘出的漢朝「竹木簡」以及敦煌發現的古「九九術殘木簡」上都是從「九九八十一」開始消察的。「九九」之名就是取口訣開頭的兩個字。公元5~10世紀間,「九九」口訣擴充到「一一如一」。
大約在宋朝(公元11、12世紀),九九歌的順序才變成和現代用的一樣,即從「一一如一」起到「九九八十一」止。
元朱世傑著《算學啟蒙》一書所載的45句口訣,已是從「一一」到」九九「,並稱為九數法。現在用的乘法口訣有兩種,一種是45句的,通常稱為小九九;還有一種是81句的,通常稱為大九九。書中記載,大九九最早見於清陳傑著的《演算法大成》。