『壹』 什麼是數學符號
數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現在常用的數學符號已超過了200個。
數學符號種類:
1,數量符號
2,預算符號
3,關系符號
4,結合符號
5,性質符號
6,省略符號
7,排列組合符號
8,離散數學符號
9,希臘字母
α,β,γ,δ,ε,λ,ζ,η,θ,ξ,σ,φ,ψ,ω都是希臘字母。
希臘字母的發音及常用意義:
希臘字母 讀音 常用意義
α 阿爾法 角度,系數,角加速度,第一個
β 貝塔/畢塔 磁通系數,角度,系數
γ 伽瑪/甘瑪 電導系數,角度,比熱容比
δ 得爾塔/岱歐塔 變化量,化學反應中的加熱,屈光度,一元二次方程 中的判別式
ε 埃普西龍 對數之基數,介電常數
ζ 澤塔 系數,方位角,阻抗,相對黏度
η 伊塔/誒塔 遲滯系數,效率
θ 西塔 溫度,角度
ι 埃歐塔 微小,一點
κ 堪帕 介質常數,絕熱指數
λ 蘭姆達 波長,體積,導熱系數
μ 謬/穆 磁導系數,微,動摩擦系(因)數,流體動力黏 度,微(千分之一),放大因數(小寫)
ν 拗/奴 磁阻系數,流體運動粘度,光子頻率,化學計量數
ξ 可西/賽 隨機變數,(小)區間內的一個未知特定值
ο 歐(阿~)米可榮 高階無窮小函數
π 派 圓周率=圓周÷直徑
ρ 柔/若 電阻系數,柱坐標和極坐標中的極徑,密度
σ,ς 西格瑪 總和,表面密度,跨導,正應力
τ 套/駝 時間常數,切應力,2π(兩倍圓周率)
υ 宇(阿~)普西龍 位移
φ 弗愛/弗憶 磁通,輔助角,透鏡焦度,熱流量
χ 凱/柯義 統計學中有卡方(χ^2)分布
ψ 賽/普賽/普西 角速,介質電通量,ψ函數
ω 歐米伽/歐枚嘎 歐姆,角速度,交流電的電角度,化學中的質量 分數
希臘字母是希臘語所使用的字母,也廣泛使用於數學、物理、生物、天文等學科。希臘字母是世界上最早有母音的字母。俄語、烏克蘭語等使用的西里爾字母和喬治亞語字母都是由希臘字母發展而來。
『貳』 數學符號都表示什麼怎麼讀
運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。
「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。
「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。
「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。
性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。
省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。
排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。
例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。
離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。
如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。
↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。
wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。
|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。
∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。
A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。
s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。
更多數學表達符號:
∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。
xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。
cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。
acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。
『叄』 什麼是數學符號
數學符號一般有以下幾種:(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏.(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等.(3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等.(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」 (5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」 (6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等.符號 意義 ∞ 無窮大 PI 圓周率 |x| 函數的絕對值 ∪ 集合並 ∩ 集合交 ≥ 大於等於 ≤ 小於等於 ≡ 恆等於或同餘 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 {x} 小數部分 x - floor(x) ∫f(x)δx 不定積分 ∫[a:b]f(x)δx a到b的定積分 P為真等於1否則等於0 ∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求極限 f(z) f關於z的m階導函數 C(n:m) 組合數,n中取m P(n:m) 排列數 m|n m整除n m⊥n m與n互質 a∈ A a屬於集合A #A 集合A中的元素個數
『肆』 數學符號的由來是什麼
1、「+」號,是15世紀德國數學家魏德美創造的。在橫線上加上一豎,表示增加。
2、「-」號,也是魏德美創造的。從加號中減去一豎,表示減少。
3、「×」號,是18世紀美國數學家歐德萊最先使用的。它表示增加的另一種方式,所以把加號斜過來寫。
4、「÷」號,是18世紀瑞士人哈納創造的。它表示分解的意思,用一條橫線把兩個圓點分開。
5、「=」號,是16世紀英國學者列科爾德發明的。
數學符號的意義:
人類的一切智力活動認識活動,都直接或間接地建立在符號的基礎上。當代數學符號是經歷了漫長的歷史而形成和發展起來的。藉助於符號使數學更加簡便了數學符號使數學發展的速度加快了。可以說,數學是數學符號的學問。
當代數學符號大致分為4類:用符號表示數與量;用符號表示某種運算,即運算符號;用符號表示某種關系,即關系符號;僅僅作為記號的一種符號。
研究數學問題的方法之一是明白數學符號的含義,靈活運用數學符號。這樣,就能更有效地從實際問題中概括出變數之間的關系,並用數學符號來表示。用數學符號代表數量關系和變化規律,是用抽象的方法進一步表明數學問題的內部聯系。
『伍』 數學字母符號是什麼
數學符號希臘字母是用希臘字母表示的數學符號。
例如:數學符號Ø(小寫ø)原本是丹麥、挪威等北歐語言中的字母,名稱跟它的讀音一樣,讀音類似英語word裡面的o的讀音。直徑符號是⌀,跟字母Øø,空集符號∅都不同。它們都跟希臘字母Φ毫無關系。都不能念成phi,空集符號就讀作「空集」,直徑符號就讀作「直徑」。
注意
變音符號寫在小寫字母的上方和大寫字母的左上方。在雙母音或二合字母情況下,第二個母音接受變音符號。氣息符號寫在銳音符或重音符的左邊,但寫在揚抑符的下方。重音符號寫分音符上方,銳音符或重音符也可以寫在兩個點的中間。
在現代希臘語里,將所有重音符號統一為一個替代符號,即銳音符,並拋棄使用氣息符號,但分音符仍然保留。當然,希臘字母如用來作特定的代號,就不需要再加附加符號了。
『陸』 數學符號是什麼意思
數學符號*是乘號的意思。*還表示除0之外的數,例:N*表示正整數。
我們現在常用於乘法運算的符號有兩個,一個是「×」,另一個是「·」。 「×」是由1631年英國數學家奧雷特最早提出的,「·」是由英國數學家赫銳奧特首創的。
其他信息
在Microsoft Word中可以插入一般應用條件下的所有數學符號,以Word2010及2010版以上軟體為例介紹操作方法:
打開Word2010文檔窗口,單擊需要添加數學符號的公式,並將插入條游標定位到目標位置。
在「公式工具/設計」功能區的「符號」分組中,單擊「其他」按鈕打開符號面板。默認顯示的「基礎數學」符號面板。用戶可以在「基礎數學」符號面板中找到最常用的數學符號。同樣地,Alt+41420(即壓下Alt不放,依次按41420(小鍵盤),最後放開Alt 就可以打出 √。
『柒』 數學是什麼符號
「+」用作加號,「-」用作減號等。
乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。
德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。
到了十八世紀,美國數學家歐德萊確定,把「×」作為乘號。他認為「×」是「+」的旋轉變形,是另一種表示增加的符號。
「÷」最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用「:」表示除或比,另外有人用「-」(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將「÷」作為除號。