導航:首頁 > 數字科學 > 小學復雜數學題有什麼方法解題

小學復雜數學題有什麼方法解題

發布時間:2023-07-13 05:32:24

1. 小學數學解題方法大全

小學數學的解題 方法 有哪些?很多人經常抓不住解題的精髓,以至於數學成績總是提不高。下面是我為大家整理的關於小學數學解題 方法大全 ,希望對您有所幫助。歡迎大家閱讀參考學習!

一、小學數學解題方法:形象思維方法

形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。

形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。

1、實物演示法

利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。

這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。

雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。

4、探索法

按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在 兒童 的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。

第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。

第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。

第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。

5、觀察法

通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」

小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。

如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。

「觀察」的要求:

第一、觀察要細致、准確。

第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。

6、典型法

針對題目去聯想已經解過的典型問題的解題規律,從而找出解題思路的方法叫做典型法。典型是相對於普遍而言的。解決數學問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總演算法、行程、工程、消同求異、平均數等。

運用典型法必須注意:

(1)要掌握典型材料的關鍵及規律。

(2)熟悉典型材料,並能敏捷地聯想到所適用的典型,從而確定所需要的解題方法。

(3)典型和技巧相聯系。

7、放縮法

通過對被研究對象的放縮估計來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴於知識的拓展能力及其想像能力。

思路一:「放大」。通過觀察發現,語、數、外三科成績在題目中各出現兩次,我們求197+199+196的和,這個和是「語數外成績的2倍」,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績。

思路二:「縮小」。我們用語數成績的和減去語外的成績,199-197=2(分),這是數學減英語成績的差。數學和英語的和是196分,再求數學的分數就不難了。

放縮法有時運用在估算和驗算上。

8、驗證法

你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。

驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。

(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。

(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。

(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)

按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。

(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。

二、小學數學解題方法: 抽象思維 方法

運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫 邏輯思維 。

抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。

形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。

辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。

小學、中學數學要培養學生初步的抽象思維能力,重點突出在:

(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。

(2)思維方法上,應該學會有條有理,有根有據地思考。

(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。

(4) 思維訓練 上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理。

9、對照法

如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。

10、公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

11、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

比較法要注意:

(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

(2)找聯系與區別,這是比較的實質。

(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。

(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。

(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

相關 文章 :

1. 小學數學常用解題思路

2. 小學數學公式大全(完整)

3. 小學數學的19種學習方法

4. 小學數學教法方法有哪些

5. 小學五年級數學學習方法和技巧大全

2. 小學數學解決問題的思路和方法

小學數學解決問題的思路和方法如下:

1、形象思維方法

形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。

形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。

公式法:運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

解題技巧:

1.剔除法:利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

2. 特殊值檢驗法:對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

3. 小學數學常考的典型題及解題技巧

小學數學題里的填空、計算、選擇題都不算很難,應用題里的工作效率、行程問題比較復雜,做題的關鍵是讀懂每個條件和問題,畫好解題示意圖,最好提前學一些方程,基本上就能解對了,實際上整個小學的難題在學會方程後,就變得簡單了,建議提前學中學的內容,應付考試就容易多了。

4. 小學數學 重難點的突破方法有哪些

數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.

(同學們開講)

學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.

5. 小學數學中解決問題的策略有哪些

要提高學生解決問題的能力,關鍵是要加強對學生進行解決問題策略的指導。解決問題的策略是在解決問題的過程中逐步形成和積累的,同時需要學生自己不斷進行內化。根據問題的難易程度,解決問題的策略可以分為一般策略和特殊策略兩類。

一、一般策略
有些問題的數量關系比較簡單,學生只需依據生活經驗或通過分析、綜合等抽象思維過程就可以直接解決問題。
1.生活化。生活化是指在解決數學問題時通過建立與學生生活經驗的聯系從而解決問題的策略,常運用於學習新知時,關鍵要在問題解決後向學生點明解決問題過程中所蘊涵的數學知識和方法。如學習《最大公因數》,先出示問題:老師最近買了一個車庫,長40分米、寬32分米,想在車庫的地面上鋪正方形地磚。如果要使地磚的邊長是整分米數,在鋪地磚時又不用切割,地磚有幾種選擇?如果要使買的塊數最少,應該買哪一種?因為學生對此類問題比較熟悉,所以普遍認為:地磚的邊長應該是40和32公有的因數,公有因數最大時買的塊數最少,解決這兩個問題應先找出40和32的因數。然後讓學生梳理解決問題的過程,並點明什麼是公因數、什麼是最大公因數、如何找公因數和最大公因數。
2.數學化。數學化是指在解決實際問題時通過建立與學生已有知識的聯系從而解決問題的策略,常運用於實際解決問題時,關鍵是在解決問題之前要讓學生明確運用什麼知識和方法來解決問題。如學習《長方形周長》,當學生已經知道長方形周長=(長+寬)×2後出示:小明沿著一個長方形游泳池走了一圈,他一共走了多少米?首先讓學生明確「求一共走了多少米就是求長方形周長」,再思考「長方形周長怎麼求」、「求長方形周長應知道什麼」,最後出示信息「長50米、寬20米」,學生就能自主解決問題。
3.純數學。純數學是指在解決數學問題時通過分析、利用數量之間的關系從而解決問題的策略,常運用於學習與舊知有密切聯系的新知時,關鍵要在需解決的數學問題和已有的數學知識之間建立起橋梁。如學習《稍復雜的分數乘法應用題》,先出示舊問題:水泥廠二月份生產水泥8400噸,三月份比二月份增加25%,三月份生產水泥幾噸?學生認為:因為增加幾噸=二月份幾噸×25%,所以三月份幾噸=二月份幾噸×(1+25%)=8400×(1+25%)。再出示新問題:水泥廠二月份生產水泥8400噸,三月份比二月份減少25%,三月份生產水泥幾噸?讓學生說說兩類問題有什麼異同,因為這兩類問題有著本質的聯系,所以教師只需在兩者之間建立起聯系的橋梁,學生就能用遷移的方法自主解決新問題,他們認為:因為減少幾噸=二月份幾噸×25%,所以三月份幾噸=二月份幾噸×(1-25%)=8400×(1-25%)。

二、特殊策略
有些問題的數量關系較復雜,常需要一些特殊的解題策略來突破難點,從而找到解題的關鍵並順利解決問題。小學生常用的也易接受的特殊策略主要有以下七種:
1.列表的策略。這種策略適用於解決「信息資料復雜難明、信息之間關系模糊」的問題,它是「把信息中的資料用表列出來,觀察和理順問題的條件、發現解題方法」的一種策略。如在學習人教版第7冊《烙餅中的數學問題》時,為了研究烙餅個數與烙餅時間的關系就可採用列表策略,如右圖。運用此策略時要注意:(1)帶領學生經歷填表過程;(2)引導學生理解數量之間的關系;(3)啟發學生利用表格理出解題思路,說一說自己的發現,感受函數關系。
2.畫圖的策略。這種策略適用於解決「較抽象而又可以圖像化」的問題,它是「用簡單的圖直觀地顯示題意、有條理地表示數量關系,從中發現解題方法、確定解題方法」的一種策略。如在學習人教版第5冊《搭配問題》時,為了能更直觀、有條理地解決問題就可採用畫圖策略,如右圖。運用此策略時要注意:(1)讓學生在畫圖的活動中體會方法,學會方法;(2)畫圖前要理請數量關系;(3)畫圖要與數量關系相統一。
3.枚舉的策略。這種策略適用於解決「用列式解答比較困難」的問題,它是「把事情發生的各種可能進行有序思考、逐個羅列,並用某種形式進行整理,從而找到問題答案」的一種策略。如在學習人教版第3冊《簡單的排列與組合》時,為了能做到不重復不遺漏就可採用枚舉策略,如右圖。運用此策略時要注意:(1)在枚舉的時候要有序地思考,做到不重復、不遺漏;(2)設計的教學活動應包括「引發需要——填表列舉——反思方法——感悟策略」等幾個主要環節;(3)要在反思中積累列舉技巧,引導學生進行整理、歸納與交流。
4.替換的策略。這種策略較適用於解決「條件關系復雜、沒有直接方法可解」的問題,它是「用一種相等的數值、數量、關系、方法、思路去替代變換另一種數值、數量、 關系、方法、思路從而解決問題」的一種策略。如學習人教版第6冊《等量代換》時,為了能把復雜問題變成簡單問題就可採用替換策略,如右圖。運用此策略時要注意:(1)把握替換的思路,提出假設並進行替換、分析替換後的數量關系;(2)掌握替換的方法,在題目中尋找可以進行替換的依據、表示替換的過程;(3)抓住替換的關鍵,明確什麼替換什麼、把握替換後的數量關系。
5.轉化的策略。這種策略主要適用於解決「能把數學問題轉化為已經解決或比較容易解決的問題」的問題,它是「通過把復雜問題變成簡單問題、把新穎問題變成已經解決的問題」的一種策略。如學習人教版第11冊《按比例分配》時,為了能讓學生利用所學知識主動解決新問題就可採用轉化策略,如右圖。運用此策略時要注意:(1)突出轉化策略的實用價值,精心選擇數學問題;(2)突破運用轉化策略的關鍵,把新問題、非常規問題分別轉化成熟悉的、常規的且能夠解決的問題;(3)在豐富的題材里靈活應用轉化策略,提高應用轉化策略解決問題的能力。
6.假設的策略。這種策略主要運用於解決「一些數量關系比較隱蔽」的問題,它是「根據題目中的已知條件或結論作出某種假設,然後根據假設進行推算,對數量上出現的矛盾進行適當調整,從而找到正確答案」的一種策略。如學習人教版第11冊《雞兔同籠》時,為了能使隱蔽復雜的數量關系明朗化、簡單化就可採用假設策略,如右圖。運用此策略時要注意:(1)根據題目的已知條件或結論作出合理的假設;(2)要弄清楚由於假設而引起的數量上出現的矛盾並作適當調整;(3)根據一個單位相差多少與總數共差多少之間的數量關系解決問題。
7.逆推的策略。這種策略主要運用於解決「已知『最後的結果、到達最終結果時每一步的具體過程或做法、未知的是最初的數量』這三個條件」的問題,它是「從題目的問題或結果出發、根據已知條件一步一步地進行逆向推理,逐步靠攏已知條件直至問題解決」的一種策略。如解決右圖中的類似問題時,為了能更充分地利用條件、更好地解決問題就可以運用逆推策略。運用此策略時要注意:(1)在鋪墊式敘述時不要有任何暗示,不到最後不要得出結論;(2)在每一處的敘述中都要能為最後的結論服務;(3)在向前推理的過程中,每一步運算都是原來運算的逆運算;(4)這類問題還可以用畫線段圖和列表的方法來解決。

關註解決問題的策略,對於如何分類其實並不重要,重要的是要理解常用策略的本質、把握每種策略的運用范圍和要點,更快、更好地解決問題。

閱讀全文

與小學復雜數學題有什麼方法解題相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:727
乙酸乙酯化學式怎麼算 瀏覽:1392
沈陽初中的數學是什麼版本的 瀏覽:1338
華為手機家人共享如何查看地理位置 瀏覽:1030
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:872
數學c什麼意思是什麼意思是什麼 瀏覽:1394
中考初中地理如何補 瀏覽:1283
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:688
數學奧數卡怎麼辦 瀏覽:1373
如何回答地理是什麼 瀏覽:1008
win7如何刪除電腦文件瀏覽歷史 瀏覽:1041
大學物理實驗干什麼用的到 瀏覽:1471
二年級上冊數學框框怎麼填 瀏覽:1685
西安瑞禧生物科技有限公司怎麼樣 瀏覽:916
武大的分析化學怎麼樣 瀏覽:1235
ige電化學發光偏高怎麼辦 瀏覽:1324
學而思初中英語和語文怎麼樣 瀏覽:1633
下列哪個水飛薊素化學結構 瀏覽:1413
化學理學哪些專業好 瀏覽:1475
數學中的棱的意思是什麼 瀏覽:1041