導航:首頁 > 數字科學 > 怎麼記住數學思路

怎麼記住數學思路

發布時間:2023-07-23 09:58:19

㈠ 高中數學知識的記憶方法

定義、定理、公式是學好數學的基礎,一些常見的題型的解答方法和技巧也需要牢記於心.。
高中數學知識記憶方法
1.聯想法

聯想,是一種創造性的活動。聯想的特點是思路開闊、富有延展性、靈活性,聯想能使腦神經細胞興奮,在大腦皮層留下清晰的印跡,因而,記憶十分牢固。堅持使用這種記憶方法,有助於發展想像力,培養創造精神。

如在高中教材:彈性碰撞一節里,講述了一個運動鋼球(m1)對心碰撞另一個靜止鋼球(m2)的規律,推導出了兩鋼球碰撞後的速度表達式:

在實際處理問題時,只要記住①、②兩式就能解決這一類碰撞問題,而不必要每次解題都要重新推導①、②兩式的來龍去脈。學習中學生應用這兩式來討論有關問題時,常常將式中分子項的腳標搞混亂。為澄清這種混亂,可把碰撞現象與公式聯系起來看,由於是m1去碰m2,我們就可把①式中的分子項'm1-m2'視為'm1→m2',即把減號'-'形象地看成為動作指向的箭頭'→',把'm1-m2'形象地讀作'運動球m1→(去碰)靜止球m2'(或稱:主動球m1→(去碰)被動球m2),作了如此聯想後,即使以後遇到題目敘述為運動的B球去碰靜止的A球,也能迅速正確地寫出表達式來。對於②式中的分子項,則只要記住它是主動球動量的2倍(2m1v1)即可。除此之外,①、②兩式的分母均相同,無所謂記憶的困難。

2.比較法

比較是認識事物的重要方法,也是進行記憶的有效方法。它可以幫助我們准確地辨別記憶對象,抓住它們的不同特徵進行記憶;也可以幫助我們從事物之間的聯繫上來掌握記憶對象;還可以幫助我們理解記憶對象。

如:在學習了機械諧振和電諧振的知識後,可將三個周期公式列出來加以比較;

不同之處是根號內的物理量L/g,m/k,LC,這不同之處正是反映了諧振系統不同的固有性質。學習中在使用機械諧振的周期公式,特別是彈簧振子的周期公式時,經常將fK號內的m與k填寫顛倒,為此可作這樣的對比聯想:把L/g跟單擺的形狀聯系起來:擺線L懸掛在上方(對應把L寫在分數線上方),擺球mg懸掛在下方(對應把g寫在分數線下方);把m/k形象地聯想為:猶如質量為m的人坐在倔強系數為 k的彈簧沙發上。

這種比較記憶法,在物理教學中會經常用到,如:比較電阻(和電容)的串、並聯特點;比較電場與重力場;比較重量與質量;比較左手定則與右手定則;比較α、β、γ衰變;比較幾個守恆定律等等。

一個學生,僅在中學階段就要學習許許多多的書本知識和課外知識,要記憶很多的概念、規律、公式和數據。僅以高中物理課本為例,學生應該掌握和記憶的物理公式,逐頁數起來就達二百個左右(含導出的公式和推導的結論式),何況學生還要在各個學科上齊頭並進!分散的、片斷的雜亂的知識總是記得不多,也不能長期保持,如果抓住了它們內在的規律,把知識條理化、系統化了,就會記得又快又牢。而這種條理化、系統化的辦法,就是給知識的珠子穿上線索。這樣,原先想要記住的一大堆公式,便只剩下若干個主要的公式了,就好像一大捧珠子,用一根線穿起來,一下子就全部提起來了。

3.規律記憶法

使用規律記憶法,能培養學生的思維能力,養成把事物聯系起來思考,透過現象抓住本質,開動腦筋揭示事物內在規律的良好習慣,這對於提高學生的思維水平是極有好處的。

4.諧音法

距μ與像距v的字母搞混淆,為此,只要記得:物距的物讀音與拼音字母的μ讀音相同,凡提到物距時,就諧音地聯想到拼音字母μ,這樣就把μ與v的物理概念區分清楚了。
高中數學公式順口溜
一、《集合與函數》

內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。

復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。

函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;

正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。

兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;

求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。

冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,

奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。

二、《三角函數》

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

頂點任庖緩扔諍竺媼礁S盞脊驕褪嗆茫夯蟠蠡。?nbsp;

變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,

餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。

計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

1加餘弦想餘弦,1減餘弦想正弦,冪升一次角減半,升冪降次它為范;

三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;

三、《不等式》

解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。

證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。

四、《數列》

等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。

數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,

取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:

首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。

五、《復數》

虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。

對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。

代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。

一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。

利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。

三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,

兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。

六、《排列、組合、二項式定理》

加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。

兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。

排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。

不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。

關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。

七、《立體幾何》

點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。

垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。

方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。

異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。

八、《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。

笛卡爾的觀點對,點和有序實數對,兩者一來對應,開創幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。

四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。

解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
高中數學的學習方法
1、准備好筆記本和草稿本

筆記本不是讓你記公式記概念,那些東西書上都有,沒必要再謄一遍到筆記本上,筆記本上主要記老師給的例題。畢竟老師是很有經驗的,他們給的例題一定是很有代表性的,必要的時候可以背一背例題的解題方法,理解思路。草稿本就是有些不是很重要的題,老師讓舉一反三這類的東西,就沒必要寫在筆記上,但是一定要跟著算,在紙上寫兩筆算一下絕對比你光看光想的效果要好得多。

2、上課一定集中注意力

要和老師有一定的互動,時間長了,上課百分之九十的時間老師都是在看著你講課,你不點頭表示明白了她就不往下講。。畢竟一節課四十分鍾,一個老師一節課平均分給每個學生也就不到一分鍾,所以自私點說,就是要給自己爭取時間。課下有問題就問,最好不要問同學,尤其是以為腦子很聰明所以數學學的好的同學,這種人千萬別問,倒不是說人家不願意給你講,而是現在畢竟是應試教育,那些聰明的同學上課不一定聽講有多認真,有些人做題就是根據自己的思路走,那些解題方法可能適合於他們並不適合你,所以問題一定找老師,老師會給你一套最適合應試的解題方法。

3、就是有些數學公式什麼的,公式背不下來就甭做題

這是真的,但是真沒必要像背古文那樣背,沒意義,背下來也不知道怎麼用。如果上課老師帶著推導公式一定要在草稿紙上劃拉一遍,不用說你自己會推,主要就是了解一下,就當是增加以下數感,這種東西做多了有好處的。另外最重要的是,老師留的作業一定認真完成,如果你上課聽講了,作業不可能不會寫。在寫作業的過程中就是在鞏固你今天學的東西,也就是再幫你背公式,並且了解用法。還有就是,復習是絕對必要的。如果不復習,上課聽得再認真也沒用,寫作業是一方面,這是當天晚上的事,第二天上課前兩分鍾把前一天的筆記上的例題拿出來掃一遍,大概就能記起來了,再結合第二天學的東西,沒太大問題了~公式也理解了,也差不多背下來了。如果還不放心,就拿張紙把公式寫下來,每次大考前看一遍,默一默也就沒太大問題了。

㈡ 怎麼才能把數學知識點背會

數學學習方法
這里我們講一下數學學習的方法.這是我們應用國外的快速學習方法,根據數學學科特點提出來的.由於代數學習法和幾何學習法的不同,我們分別進行討論.
一、代數學習法.
抄標題,瀏覽定目標.
閱讀並記錄重點內容.
試作例題.
快做練習,歸納題型.
回憶小結
二、幾何學習四大步.
1.①書寫標題,瀏覽教材
②自我講授,寫出目錄
2.①按目錄,讀教材
②自我講授幾何概念及定理
3.①閱讀例題,形成思路
②寫出解答例題過程
4.①快做練習.
②小結解題方法.
三.數學概念學習方法.
數學中有許多概念,如何讓學生正確地掌握概念,應該指明學習概念需要怎樣的一個過程,應達到什麼程度.數學概念是反映數學對象本質屬性的思維形式,它的定義方式有描述性的,指明外種延的,有種概念加類差等方式.一個數學概念需要記住名稱,敘述出本質屬性,體會出所涉及的范圍,並應用概念准確進行判斷.這些問題老師沒有要求,不給出學習方法,學生將很難有規律地進行學習.
下面我們歸納出數學概念的學習方法:
閱讀概念,記住名稱或符號.
背誦定義,掌握特性.
舉出正反實例,體會概念反映的范圍.
進行練習,准確地判斷.
四、學公式的學習方法
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數.有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里.教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式.
我們介紹的數學公式的學習方法是:
書寫公式,記住公式中字母間的關系.
懂得公式的來龍去脈,掌握推導過程.
用數字驗算公式,在公式具體化過程中體會公式中反映的規律.
將公式進行各種變換,了解其不同的變化形式.
將公式中的字母想像成抽象的框架,達到自如地應用公式.
五、數學定理的學習方法.
一個定理包含條件和結論兩部分,定理必須進行證明,證明過程是連接條件和結論的橋梁,而學習定理是為了更好地應用它解決各種問題.
下面我們歸納出數學定理的學習方法:
背誦定理.
分清定理的條件和結論.
理解定理的證明過程.
應用定理證明有關問題.
體會定理與有關定理和概念的內在關系.
有的定理包含公式,如韋達定理、勾股定理、正弦定理,它們的學習還應該同數公式的學習方法結合起來進行.
六、初學幾何證明的學習方法.
在初一第二學期,初二、高一立體幾何學習的開始,學生總感到難以入門,以下的方法是許多老教師十分認同的,無論是上課還是自學,均可以開展.
看題畫圖.(看,寫)
審題找思路(聽老師講解)
閱讀書中證明過程.
回憶並書寫證明過程.
七 .提高幾何證明能力的化歸法.
在掌握了幾何證明的基本知識和方法以後,在能夠較順利和准確地表述證明過程的基礎上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧.這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達到上述目的.
化歸法是將未知化歸為已知的方法,當我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關鍵步驟,將它化歸為已知題型時就可結束.此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細的表述過程.
提高幾何證明能力的化歸法:
1.審題,弄清已知條件和求證結論.
2.畫圖,作輔助線,尋找證題途徑.
3.記錄證題途徑的各個關鍵步驟.
4.總結證明思路,使證題過程在大腦中形成清淅的印象.
八、波利亞解題思考方法.
預見法
收集資料,進行組織.
辨認與回憶,充實與重新安排.
分離與組合.
回顧
解答問題法.
弄清問題.
擬定問題.
實現計劃.
回顧.
解題過程自問法.
我選擇的是怎樣的一條解題途徑.
我為什麼作出這樣的選擇?
我現在已進行到了哪一階段?
這一步的實施在整個解題過程中具有怎樣的地位?
我目前所面臨的主要困難是什麼?
解題的前景如何?
九 、數學學習的基本思維方法.
1. 觀察與實驗
2.分析與綜合
3.抽象與概括
4.比較與分類
5.一般化與特殊化
6.類比聯想與歸納猜想
十、理解、鞏固、應用、系統化四步學習法
1.理 內容,標志,階段,過程.
2.鞏 固:透徹理解,牢固記憶,多方聯想,合理復習.
3.應 用:理論,實踐,具體,綜合.
4.系統化: ①明確系統內部各要素的屬性.
②使各要素之間形成多方的聯系.
③概括各要素的各種屬性,形成整體性.
④同化於原知識系統之中.
十一、高效學習方法在數學學習中的應用
超級學習方法

請採納,謝謝

㈢ 數學筆記應該怎麼記比較好

記數學筆記方法:

三、記本節課的例題分析及其解題思路。

每節課的知識內容講完以後老師都會將本節內容所涉及到的題型進行歸納講解,所以我們在記筆記的時候,要理解老師的解題思路,自己再將這個思路理一遍,將它寫下來,與老師的過程做一個對比,差在哪裡,再將它標注出來。

最後歸納一下這一類題型的做題方法,用不同的顏色將它寫在這個例題的旁邊。

四、記易錯易混點。

每節課後老師都會針對本節課的內容適當布置作業,將自己在做得過程中容易出錯的那些題記在我們的筆記本上,分析出錯的原因以避免下次再犯同樣的錯。

㈣ 如何學好數學|關鍵要先學這八種數學思維方法!

弘道思維養成中心-李廿廿老師整理

在小學、初中、高中數學學習中,比運算更重要的就是思維方式。下面介紹幾種適合小學生、初中生、高中生的的數學學習思維方法以及如何訓練提升數學思維能力。

第一部分-數學思維方法有哪些

一、轉化方法:

轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、更清晰。

二、邏輯方法:

邏輯是一切思考的基礎。羅輯思維,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。羅輯思維,在解決邏輯推理問題時使用廣泛。

三、逆向方法:

逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。

四、對應方法:

對應思維是在數量關系之間(包括量差、量倍、量率)建立一種直接聯系的思維方法。比較常見的是一般對應(如兩個量或多個量的和差倍之間的對應關系)和量率對應。

五、創新方法:

創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,提得出與眾不同的解決方案。可分為差異性、探索式、優化式及否定性四種。

六、系統方法:

系統思維也叫整體思維,系統思維法是指在解題時對具體題目所涉及到的知識點有一個系統的認識,即拿到題目先分析、判斷屬於什麼知識點,然後回憶這類問題分為哪幾種類型,以及對應的解決方法。

七、類比方法:

類比思維是指根據事物之間某些相似性質,將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發現知識的共性,找到其本質,從而解決問題的思維方法。

八、形象方法:

形象思維,主要是指人們在認識世界的過程中,對事物表象進行取捨時形成的,是指用直觀形象的表象,解決問題的思維方法。想像是形象思維的高級形式也是其一種基本方法。

第二部分-如何鍛煉自己的數學思維?

一、做出來不如講出來,聽得懂不如說得通。

做10道題,不如講一道題。孩子做完家庭作業後,家長不妨鼓勵孩子開口講解一下數學作業中的難題,我也在群里會經常發一些比較好的訓練題,您也可以鼓勵去想一想說一說,如果講得好,家長還可進行小獎勵,讓孩子更有成就感。

二、舉一反三,學會變通。

舉一反三出自孔子的《論語·述而》:「舉一隅,不以三隅反,則不復也。」意思是說:我舉出一個牆角,你們應該要能靈活的推想到另外三個牆角,如果不能的話,我也不會再教你們了。後來,大家就把孔子說的這段話變成了「舉一反三」這句成語,意思是說,學一件東西,可以靈活的思考,運用到其他相類似的東西上!

在數學的訓練中,一定要給孩子舉一反三訓練。一道題看似理解了,但他的思維可能比較直線,不多做幾道舉一反三或在此基礎上變式的題,他還是轉不過玩了。

舉一反三其實就是「師傅領進門,學藝在自身」這句話的執行行為。

三、建立錯題本,培養正確的思維習慣

每上第一次課,我所講的課程內容都和學生的錯題有關。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學生的反應,或是像沒有見過,或是對題目非常熟悉,但沒有思路。這些現象的發生,都是學生沒有及時總結的原因。所以第一次課後我都建議我的學生做一個錯題本,像寫日記一樣,記錄下自己的錯題和錯因分析。

一般來說,錯題分為三種類型:第一種是特別愚蠢的錯誤、特別簡單的錯誤;第二種就是拿到題目時一點思路都沒有,不知道解題該從何下手,但是一看到答案卻恍然大悟;第三種就是題目難度中等,按道理有能力做對,但是卻做錯了。

尤其第二種、第三種,必須放到錯題本上。建立錯題本的好處就是掌握了自己所犯錯的類型,為防範一類錯誤成為習慣性的思維。

四、圖形推理是培養邏輯思維能力最好的工具

假是真時真亦假,真是假時假亦真;邏輯思維是在規則的確定下而進行的思維,如果聯系生活就屬於非常規思維。一切看似與生活毫無聯系卻自在法則約束規范的范圍內。邏輯推理的「瞞天過海」可謂五花八門,好似一個萬花筒,百變無窮,樂趣無窮。

幾何圖形是助其鍛煉邏輯思維的好工具,經典的圖形推理題總有其構思、思路、巧妙的思維;經典在於其看似變態,而實際解法卻簡而又簡單。

因此,多訓練一些圖形推理題,對其邏輯思維很有幫助。

㈤ 數學筆記怎麼記

1、一記內容提綱

老師講課大多有提綱,並且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上,同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便於課後復習回顧,整體把握知識框架,對所學知識做到胸有成竹,清晰完整。

2、二記疑難問題

將課堂上未聽懂的問題及時記下來,便於課後請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。

3、三記思路方法

對老師在課堂上介紹的解題方法和分析思路也應及時記下。課後加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來後,便於課後及時與老師商榷和探討。

4、四記歸納總結

注意記下老師的課後總結,這對於濃縮一堂課的內容,找出重點及各部分之間的聯系,掌握基本概念、公式、定理,尋找規律,融會貫通課堂內容都很有作用。

5、五記體會感受

數學學習是智、情、意、行的綜合.數學學習過程伴隨著積極的情感體驗、意志體驗過程。記下自己學習過程的感受,可以用來更好地調控自己的學習行為。

(5)怎麼記住數學思路擴展閱讀

一定要理解數學課本每一章節的概念,特別是老師在課堂上反復強調的概念一定要熟記於心。有些數學規律都是在掌握知識點概念的基礎上才建立起來的,重要性可想而知.

課堂上老師講課一般會比較快速,對於不懂的內容標記下來,不要因為這些影響聽課效率;課本上的例題都是經典題型,所以及時的練習題目,鞏固課堂內容很重要!這也可以幫助大家加深記憶。

㈥ 怎樣可以最快找到數學題的思路

數學歸納法 逆推法 多做題 自然而然思路就有啦

閱讀全文

與怎麼記住數學思路相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:724
乙酸乙酯化學式怎麼算 瀏覽:1389
沈陽初中的數學是什麼版本的 瀏覽:1335
華為手機家人共享如何查看地理位置 瀏覽:1027
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:867
數學c什麼意思是什麼意思是什麼 瀏覽:1391
中考初中地理如何補 瀏覽:1279
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:685
數學奧數卡怎麼辦 瀏覽:1369
如何回答地理是什麼 瀏覽:1005
win7如何刪除電腦文件瀏覽歷史 瀏覽:1038
大學物理實驗干什麼用的到 瀏覽:1467
二年級上冊數學框框怎麼填 瀏覽:1682
西安瑞禧生物科技有限公司怎麼樣 瀏覽:914
武大的分析化學怎麼樣 瀏覽:1232
ige電化學發光偏高怎麼辦 瀏覽:1320
學而思初中英語和語文怎麼樣 瀏覽:1629
下列哪個水飛薊素化學結構 瀏覽:1409
化學理學哪些專業好 瀏覽:1472
數學中的棱的意思是什麼 瀏覽:1037