⑴ 數學科學是什麼樣一種結構體系
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
數學的基本特徵是:
1、高度的抽象性和嚴密的邏輯性。
2、應用的廣泛性與描述的精確性。
數學是各門科學和技術的語言和工具,數學的概念、公式和理論都已滲透在其他學科的教科書和研究文獻中。
許許多多數學方法都已被寫成軟體,有的數學軟體作為商品在出售,有的則被製成晶元裝置在幾億台電腦以及各種先進設備之中,成為產品高科技含量的核心。
3、研究對象的多樣性與內部的統一性。
數學是一個「有機的」整體,它像一個龐大的、多層次的、不斷生長的、無限延伸的網路。高層次的網路是由低層次網路和結點組成的,後者是各種概念、命題和定理。
各層次的網路和結點之間是用嚴密的邏輯連接起來的。這種連接是客觀事物內在邏輯的反映。
(1)數學的數什麼結構擴展閱讀
有關數學定義的名言:
1、數學是上帝描述自然的符號。——黑格爾數學是一切知識中的最高形式。——柏拉圖
2、自然界的書是用數學的語言寫成的。——伽利略數學的本質在於它的自由。——康托爾
3、宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。——華羅庚
4、數學是研究抽象結構的理論。——布爾巴基學派
5、數學是知識的工具,亦是其它知識工具的泉源。——笛卡爾用一,從無,可生萬物。——萊布尼茲
6、數學家們都試圖在這一天發現素數序列的一些秩序,我們有理由相信這是一個謎,人類的心靈永遠無法滲入。——歐拉數學是科學之王。——高斯
7、數學是符號邏輯。——羅素音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科學可改善物質生活,但數學能給予以上的一切。——克萊因
8、萬物皆數。——畢達哥拉斯幾何無王者之道。——歐幾里德
參考資料來源:網路-數學
⑵ 數學組成是什麼意思
數學組成是什麼意思
數學結構
數學結構(mathematical
structure)亦稱關系結構,簡稱結構.現代數學的一個基本概念.各種數學對象的統稱.它是對於各種數學對象,例如,有序集、線性空間、群、環、拓撲空間、流形等,用集合和關系的語言給出的統一形式.結構由若干集合,定義在集合上或集合間的一些關系,以及一組作為條件的公理組成.隨著數學的發展,不斷出現許多新的數學分支,這些分支有其各自的研究對象,獨特的方法,獨自的語言.另一方面,數學不同領域的方法和思想的互相滲透,建立了現代數學的共同邏輯基礎(數理邏輯)、共同的基本概念(集合)和共同的方法(公理化方法).法國布爾巴基學派採用全局觀點,著重分析各個數學分支之間的結構差異和內在聯系,他們認為數學的基本結構有三種,稱為母結構:
1.代數結構.由集合及其上的運算組成,如群、環、域、線性空間等.
2.序結構.由集合及其上的序關系組成,如偏序集、全序集、良序集.
3.拓撲結構.由集合及其上的拓撲組成,如拓撲空間、度量空間、緊致集、列緊空間等.
通過以上三種母結構的變化、復合、交叉形成各種數學分支.
⑶ 數學是由什麼組成
既然你問得這么不負責!偶也第一次很不負責地告訴你!下面是復制的!
名稱來源
數學(mathematics;希臘語:μαθηματικά)這一詞在西方源自於古希臘語的μάθημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義-「數學研究」,即使在其語源內。其形容詞μαθηματικός(mathēmatikós),意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。(拉丁文:Mathemetica)原意是數和數數的技術。 我國古代把數學叫算術,又稱算學,最後才改為數學。
數學史
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。 今日,數學被使用在世界不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然許多以純數學開始的研究,但之後會發現許多應用。 創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。
[編輯本段]數學的本質
數學的本質是什麼?為什麼數學可以運用在所有的其它科目上? 數學是研究事物數量和形狀規律的科目。 如果要深入的研究其本質及其擴展問題,就必須引入【全集然文明】專有名詞了。 其實數學的本質是:一門研究【儲空】的科目。 自然萬物都有其存儲的空間,這種現象稱之為【儲空】。 要判斷一個事物是否為「儲空」其實很簡單:只要能夠套入「在××里」的××就是「儲空」(包括具體和抽象)。於是大家將會發現,所有的事物都可以套入其中,也就是說:自然萬物都只是不同的「儲空」而已。 於是人們也發現:【代數】就是研究【儲空量】的科目;【幾何】就是研究【儲空形狀】的科目。而既然自然萬物都只是不同的儲空而已,那麼數學當然也就可以通用於所有的科目之中了!
1.更多的證據
因為一個除真空外的儲空都是有【儲隔】(儲空隔膜)的,於是人們在其它科目中使用數字就必須用【單位】來區分各種不同的儲空,如:個、頭、條、小時、牛、焦耳、歐姆、安培等等,可以說離開了單位,數字幾乎毫無意義。 並且各種名詞的【定義】也是相關儲空的儲隔,就是區別於其他事物的地方。
2.新數學等式和計算模型
異儲空計算模型異儲空等式【異儲空等式】比如:1個人 異等於 5個蘋果 ,就是說:一個人可以得到5個蘋果,或一個人和5個蘋果相聯系(任何聯系都可以);異等號就是等號=下面加個o(儲空標志);這樣就可以簡單的描述很多日常生活中碰到的計算。而且您還可以通過右圖的【異儲空計算模型】(最簡單的模型),來計算一些事物。
3.其他幾何領域
當然有,其實一直都有兩個巨大的幾何領域被人們長期的忽視,那就是【文字幾何】與【功能幾何】。 (1)文字幾何:當一些有特定含義的文字按照特殊的組合和形狀排列下來就會出現各種特殊的功能和特性。就像我們最常見的「化學元素周期表」、「文字圖表」、「數學計算模型」等等。 (2)功能幾何:各種形狀都是擁有各種不同的功能的!如球形可以做大容量的容納物質,交叉有利於物質傳播等等。所以我們應該仔細研究和探討各種形狀的各種特殊功能! 使用全集然文明邏輯:如果自然萬物有共同的本質和規律,那麼它們必然可以用來推導各個科目的本質和規律,並推理出該科目內的新內容。於是我們發現了數學就是研究「儲空」的一個科目,並推理出了各種新領域。 註:等式、四則運算、解方程式的本質都可以用【儲空】內部規律推理出來
[編輯本段]數學研究的各領域
數學主要的學科首要產生於商業上計算的需要、了解數字間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的子領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。 數量 數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。數論還包括兩個被廣為探討的未解問題:孿生素數猜想及哥德巴赫猜想。 當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:艾禮富數,它允許無限集合之間的大小可以做有意義的比較。 結構 許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。 空間 空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及數,且包含有著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。在其許多分支中,拓撲學可能是二十世紀數學中有著最大進展的領域,並包含有存在久遠的龐加萊猜想及有爭議的四色定理,其只被電腦證明,而從來沒有由人力來驗證過。 基礎與哲學 為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。德國數學家康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,就連被譽為「博大精深,富於創舉」的數學家Pioncare也把集合論比作有趣的「病理情形」,甚至他的老師Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」.對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」他還指出:「數學的本質在於它的自由性,不必受傳統觀念束縛。」這種爭辯持續了十年之久。Cantor由於經常處於精神壓抑之中,致使他1884年患了精神分裂症,最後死於精神病院。 然而,歷史終究公平地評價了他的創造,集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。 數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。 恩格斯說:「數學是研究現定世界的數量關系與空間形式的科學。」
[編輯本段]數學的分類
離散數學 模糊數學
數學的五大分支
1.經典數學 2.近代數學 3.計算機數學 4.隨機數學 5.經濟數學
數學分支
1.算術 2.初等代數 3.高等代數 4. 數論 5.歐式幾何 6.非歐式幾何 7.解析幾何 8.微分幾何 9.代數幾何 10.射影幾何學 11.幾何拓撲學 12.拓撲學 13.分形幾何 14.微積分學 15. 實變函數論 16.概率和統計學 17.復變函數論 18.泛函分析 19.偏微分方程 20.常微分方程 21.數理邏輯 22.模糊數學 23.運籌學 24.計算數學 25.突變理論 26.數學物理學
廣義的數學分類
從縱向劃分: 1.初等數學和古代數學:這是指17世紀以前的數學。主要是古希臘時期建立的歐幾里得幾何學,古代中國、古印度和古巴比倫時期建立的算術,歐洲文藝復興時期發展起來的代數方程等。 2.變數數學:是指17--19世紀初建立與發展起來的數學。從17世紀上半葉開始的變數數學時期,可以分為兩個階段:17世紀的創建階段(英雄時代)與18世紀的發展階段(創造時代)。 3.近代數學:是指19世紀的數學。近代數學時期的19世紀是數學的全面發展與成熟階段,數學的面貌發生了深刻的變化,數學的絕大部分分支在這一時期都已經形成,整個數學呈現現出全面繁榮的景象。 4.現代數學:是指20世紀的數學。1900年德國著名數學家希爾伯特(D. Hilbert)在世界數學家大會上發表了一個著名演講,提出了23個預測和知道今後數學發展的數學問題(見下),拉開了20世紀現代數學的序幕。 註:希爾伯特的23個問題—— 在1900年巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題通稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未解決。他在講演中所闡發的想信每個數學問題都可以解決的信念,對於數學工作者是一種巨大的鼓舞。 希爾伯特的23個問題分屬四大塊:第1到第6問題是數學基礎問題;第7到第12問題是數論問題;第13到第18問題屬於代數和幾何問題;第19到第23問題屬於數學分析。 現在只列出一張清單: (1)康托的連續統基數問題。 (2)算術公理系統的無矛盾性。 (3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。 (4)兩點間以直線為距離最短線問題。 (5)拓撲學成為李群的條件(拓撲群)。 (6)對數學起重要作用的物理學的公理化。 (7)某些數的超越性的證明。 (8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。 (9)一般互反律在任意數域中的證明。 (10)能否通過有限步驟來判定不定方程是否存在有理整數解? (11)一般代數數域內的二次型論。 (12)類域的構成問題。 (13)一般七次代數方程以二變數連續函數之組合求解的不可能性。 (14)某些完備函數系的有限的證明。 (15)建立代數幾何學的基礎。 (16)代數曲線和曲面的拓撲研究。 (17)半正定形式的平方和表示。 (18)用全等多面體構造空間。 (19)正則變分問題的解是否總是解析函數? (20)研究一般邊值問題。 (21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。 (22)用自守函數將解析函數單值化。 (23)發展變分學方法的研究。 從橫向劃分: 1.基礎數學(Pure Mathematics)。又稱為理論數學或純粹數學,是數學的核心部分,包含代數、幾何、分析三大分支,分別研究數、形和數形關系。 2.應用數學(Applied mathematics)。簡單地說,也即數學的應用。 3 .計算數學(Computstion mathematics)。研究諸如計算方法(數值分析)、數理邏輯、符號數學、計算復雜性、程序設計等方面的問題。該學科與計算機密切相關。 4.概率統計(Probability and mathematical statistics)。分概率論與數理統計兩大塊。 5.運籌學與控制論(Op-erations research and csntrol)。運籌學是利用數學方法,在建立模型的基礎上,解決有關人力、物資、金錢等的復雜系統的運行、組織、管理等方面所出現的問題的一門學科。
[編輯本段]符號、語言與嚴謹
在現代的符號中,簡單的表示式可能描繪出復雜的概念。此一圖像即是由一簡單方程所產生的。 我們現今所使用的大部份數學符號都是到了16世紀後才被發明出來的。在此之前,數學被文字書寫出來,這是個會限制住數學發展的刻苦程序。現今的符號使得數學對於專家而言更容易去控作,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼。 數學語言亦對初學者而言感到困難。如何使這些字有著比日常用語更精確的意思。亦困惱著初學者,如開放和域等字在數學里有著特別的意思。數學術語亦包括如同胚及可積性等專有名詞。但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性。數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。 嚴謹是數學證明中很重要且基本的一部份。數學家希望他們的定理以系統化的推理依著公理被推論下去。這是為了避免錯誤的「定理」,依著不可靠的直觀,而這情形在歷史上曾出現過許多的例子。在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹。牛頓為了解決問題所做的定義到了十九世紀才重新以小心的分析及正式的證明來處理。今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度。當大量的計量難以被驗證時,其證明亦很難說是有效地嚴謹。