Ⅰ 質數的公式是什麼
質數公式:
盡管整個素數是無窮的,仍然有人會問「100000以下有多少個素數?」,「一個隨機的100位數多大可能是素數?」。素數定理可以回答此問題。
1、費馬數2^(2^n)+1
被稱為「17世紀最偉大的法國數學家」的費馬,也研究過質數的性質。他發現,設Fn=2^(2^n)+1,則當n分別等於0、1、2、3、4時,Fn分別給出3、5、17、257、65537,都是質數,由於F5太大(F5=4294967297),他沒有再往下檢測就直接猜測:對於一切自然數,Fn都是質數。這便是費馬數。但是,就是在F5上出了問題!
F5=4294967297=641×6700417,它並非質數,而是一個合數!
2、梅森質數
17世紀還有位法國數學家叫梅森,他曾經做過一個猜想:2^p-1 ,當p是質數時,2^p-1是質數。他驗算出了:當p=2、3、5、7、17、19時,所得代數式的值都是質數,後來,歐拉證明p=31時,2^p-1是質數。 p=2,3,5,7時,2^p-1都是素數,但p=11時,所得2047=23×89卻不是素數。
3、算術基本定理
任何一個大於1的自然數N,都可以唯一分解成有限個質數的乘積 N=(P_1^a1)*(P_2^a2)......(P_n^an) , 這里P_1<P_2<...<P_n是質數,其諸方冪 ai 是正整數。
這樣的分解稱為N 的標准分解式。
參見網路:http://ke..com/link?url=1zDKMiPvKbCWzchU3V_otGTfk4AVsVlvvmyl7cAc6-_u60_
Ⅱ 如何算出一個數的所有質數
1、找到這個數字的平方根m=√m
2、找到不大於m的所有質數。
3、在一張自然數表上劃掉所有質數的整數倍(質數本身不劃掉)
4、把1劃掉。
5、沒有劃掉的數字就是質數。
例如,我們要找到100以內的所有質數,只需要按照下面的步驟進行:
1、計算100的平方根,是10。
2、10以內的質數有2、3、5、7
3、劃掉2、3、5、7的整數倍。首先劃掉2的倍數,如4、6、8…、98、100,然後劃掉3的倍數,如6、9、12、15、…、99, 重復的就不需要再劃掉了。然後劃掉5的倍數,7的倍數。
4、最後劃掉1。
(2)數學上怎麼求素數擴展閱讀
質數與黎曼猜想
我們之前談到:質數與黎曼猜想之間有著千絲萬縷的聯系。1896年,法國科學院舉行比賽:徵稿證明黎曼定理。兩位年輕的數學家阿達馬和德·拉·瓦萊布桑獲得了這一殊榮。
實際上這兩位數學家並沒有證明黎曼猜想,只是獲得了一點進展,但是這一點進展就一舉證明了歐拉和勒讓德的猜想,把素數猜想變成了素數定理。黎曼猜想的威力可見一斑。
1901年,瑞典數學家科赫證明:如果黎曼猜想被證實,那麼素數定理中的誤差項c大約是√xln(x)的量級。
即便黎曼猜想被證實,人們也只是在質數規律探索的過程中更近了一步,距離真正破解質數的規律,還有很長的路要走。也許質數就是宇宙留給人類的密碼。