⑴ 什麼叫做自然數,自然數有哪些
自然數用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,……所表示的數。
表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。自然數有有序性,無限性。分為偶數和奇數,合數和質數等。
分類:
按是否是偶數分
可分為奇數和偶數。
1、奇數:不能被2整除的數叫奇數。
2、偶數:能被2整除的數叫偶數。也就是說,除了奇數,就是偶數
註:0是偶數。(2002年國際數學協會規定,零為偶數.我國2004年也規定零為偶數。偶數可以被2整除,0照樣可以,只不過得數依然是0而已)。
按因數個數分:
可分為質數、合數、1和0。
1、質 數:只有1和它本身這兩個因數的自然數叫做質數。也稱作素數。
2、合 數:除了1和它本身還有其它的因數的自然數叫做合數。
3、1:只有1個因數。它既不是質數也不是合數。
4、當然0不能計算因數,和1一樣,也不是質數也不是合數。
備註:這里是因數不是約數。
⑵ 數學中「存在」和「任意」的區別
一、邏輯范圍不同:
1、存在是指在一個集合的所有元素中,有一個或一個以上符合就可以了,也就是最少有一個符合。
2、任意是指在一個集合的所有元素中,所有元素都符合,也就是有一個不符合都不行。
二、詞性不同:
1、存在是一個數學名詞,主要指存在量詞。
2、任意是是一個全稱量詞。全稱量詞是指在語句中含有短語「全額」、「每一個」、「任意」、「一切」等都是在指定范圍內,表示該指定范圍內的全體對象或該指定范圍整體的含義的詞。
三、適用的命題類型不同:
1、任意適用於全稱命題:含有全稱量詞的命題叫作全稱命題。全稱量詞的否定是存在量詞。全稱命題,可以用全稱量詞,也可以通過「人人」等主語重復的形式來表達,甚至可以不使用任何量詞標志,如「人類都是有智慧的。」
2、存在適用於特稱命題,含有存在量詞 的命題,叫作特稱命題。對於含有一個量詞的全稱命題p:∀x∈M,p(x)的否定┐p是:∃x∈M,┐p(x)。對於含有一個量詞的特稱命題p:∃x∈M,p(x)的否定┐p是:∀x∈M,┐p(x)。